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Abstrat

We provide an equilibrium framework for modeling the behavior of an agent

who holds a simpli�ed view of a dynami optimization problem. The agent faes

a Markov deision proess, where a transition probability funtion determines

the evolution of a state variable as a funtion of the previous state and the

agent's ation. The agent is unertain about the true transition funtion and

has a prior over a set of possible transition funtions; this set re�ets the agent's

(possibly simpli�ed) view of her environment and may not ontain the true

funtion. We de�ne an equilibrium onept and provide onditions under whih

it haraterizes steady-state behavior when the agent updates her beliefs using

Bayes' rule.
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1 Introdution

Early interest on studying the behavior of agents who hold misspei�ed views of the

world (e.g., Arrow and Green [1973℄, Kirman [1975℄, Sobel [1984℄, Kagel and Levin

[1986℄, Nyarko [1991℄, Sargent [1999℄) has reently been renewed by the work of

Piione and Rubinstein [2003℄, Jehiel [2005℄, Eyster and Rabin [2005℄, Jehiel and Koessler

[2008℄, Esponda [2008℄, Esponda and Pouzo (2016, 2017, 2019), Eyster and Piione

[2013℄, Spiegler (2013, 2016, 2017), Fudenberg, Romanyuk, and Strak [2017℄, Hei-

dhues, K®szegi and Strak (2018a, 2018b), and Eliaz and Spiegler [forthoming℄,

among others. There are least two reasons for this interest. First, it is natural for

agents to be unertain about their omplex environment and to represent this un-

ertainty with parsimonious parametri models that are likely to be misspei�ed.

Seond, endowing agents with misspei�ed models an explain how ertain biases in

behavior arise endogenously as a funtion of the primitives.

The previously ited papers fous on problems that are intrinsially �stati� in the

sense that they an be viewed as repetitions of stati problems where the only link

between periods arises beause the agent is learning the parameters of the model.

Yet dynami deision problems, where an agent hooses an ation that a�ets a state

variable (other than a belief), are ubiquitous in eonomis. The goal of this paper

is to provide a tratable framework to study dynami settings where the agent has a

possibly misspei�ed model.

We study a Markov deision proess where a single agent hooses ations at dis-

rete time intervals. A transition probability funtion desribes how the agent's ation

and the urrent state a�ets next period's state. The urrent payo� is a funtion of

states and ations. As is well known, this problem an be represented reursively via

the following Bellman equation,

V (s) = max
x∈Γ(s)

π(s, x) + δ

�

S

V (s′)Q(ds′ | s, x), (1)

where s is the urrent state, x is the agent's hoie variable from a feasible set Γ(s), π

is the payo� funtion, Q is the transition probability funtion, and δ is the disount

fator.

In realisti environments, the agent often has to deal with two di�ult issues:

a potentially large state spae (i.e., the urse of dimensionality) and unertainty
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about the transition probability funtion. For example, equation (1) may represent

a dynami savings problem where the agent deides every period what fration x of

her wealth to save. The state variable s is a vetor that inludes wealth as well as

any variable that helps predit returns to savings, suh as previous interest rates and

other maroeonomi indiators. The funtion Q represents the return funtion, and,

naturally, the agent may not even be sure whih indiators are relevant in prediting

returns. In suh a omplex environment, it is reasonable to expet the agent to

simplify the problem and fous only on ertain variables by solving a version of

equation (1) where Q is replaed by a �simpler� transition funtion.

The main objetive of this paper is to provide a framework for modeling the be-

havior of an agent who holds a simpli�ed view of the dynami optimization problem

represented by equation (1). Our approah is to postulate that the agent is endowed

with a family of transition probability funtions, {Qθ : θ ∈ Θ}, indexed by a param-

eter spae Θ. This family aptures both the unertainty of the agent as well as the

way in whih she simpli�es the problem. In partiular, the agent's model is misspe-

i�ed whenever the true model Q is not in {Qθ : θ ∈ Θ}. For example, the agent may

inorretly believe that ertain maroeonomi indiators are irrelevant for prediting

returns, but she may still be unertain as to the preditive value of the remaining

indiators. Eah period, the agent observes the urrent state, hooses an ation, and

then updates her belief using Bayes' rule when the new state is realized.

Our main ontribution is to introdue an equilibrium onept to desribe the

steady-states of the agent's learning dynamis when the agent is a Bayesian learner

with a misspei�ed model. To haraterize the agent's steady-state behavior, the

modeler simply solves problem (1), exept that the true transition funtion Q is

replaed by the agent's pereption of this transition, Q̄µ∗ =
�

Θ
Qθµ

∗(dθ), where µ∗

is interpreted as the agent's equilibrium belief over all models in Θ. As any other

equilibrium objet, the equilibrium belief µ∗
is determined endogenously. In addition

to gaining tratability, we fous on equilibrium behavior beause it is standard in

eonomis and allows us to relate our �ndings to previous work and also beause we are

interested in the long-run impliations of model misspei�ation and not neessarily

on mistakes that arise from limited opportunities to learn.

We say that a probability distribution over state-ation pairs is a Berk-Nash equi-

librium if it satis�es two requirements. First, there exists a belief over Θ suh that,

for any state-ation pair in the support of the equilibrium distribution, the agent's
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ation given the state is optimal given the belief, and, moreover, the belief puts prob-

ability one on the set of parameter values that are �losest� to the true transition

probability funtion over state-ation pairs. The notion of �losest� is formalized by a

weighted version of Kullbak-Leibler divergene, where the weights in turn depend on

the equilibrium distribution. Seond, the agent's equilibrium behavior gives rise to

a partiular Markov proess over states and ations, and we require the equilibrium

distribution to be a stationary distribution of this proess.

We then illustrate how our equilibrium onept an help analyze environments that

seemed previously intratable using three examples. First, we onsider the problem of

an agent faing a dynami e�ort task who fails to aount that his performane today

is a�eted by his performane yesterday. Seond, we onsider a stohasti growth

model where the agent inorretly assumes that produtivity and preferene shoks

are independent. Finally, we onsider a prodution problem with Markov shoks and

unertain ost where the deision maker has an inorret parametri spei�ation of

the ost funtion.

We onlude by investigating one possible foundation for our equilibrium onept.

Consider the ase where the agent has a prior belief µ over Θ that is updated using

Bayes' rule based on the urrent state, the agent's deision, and the state observed

next period, µ′ = B(s, x, s′, µ), where B denotes the Bayesian operator and µ′
is the

posterior belief. One onveniene of Bayesian updating is that we an represent this

problem reursively via the following Bellman equation, where the state variable now

also inludes the agent's belief:

W (s, µ) = max
x∈Γ(s)

π(s, x) + δ

� �

W (s′, µ′)Qθ(ds
′ | s, x)µ(dθ), (2)

where µ′ = B(s, x, s′, µ) is the updated belief.

In this environment, a natural question is whether the limiting distribution of

state-ation pairs orresponds to a Berk-Nash equilibrium. In the stati ase, where

there is no state variable s, the answer has been shown to be yes under fairly mild

assumptions (see Esponda and Pouzo [2016℄). A remarkable feature of this result,

whih is shared by other equilibrium foundations, suh as the foundation for Nash and

self-on�rming equilibrium (e.g., Fudenberg and Kreps [1993℄, Fudenberg and Kreps

[1995℄), is that the modeler does not need to takle the problem of belief updating in

order to haraterize limiting behavior, but rather applies a �xed equilibrium belief.
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In the dynami environments that we study in this paper, the answer to our ques-

tion is more nuaned. We show that the answer is positive if one of three onditions

is satis�ed. The �rst ondition is that the environment is subjetively stati, in the

sense that the the agent believes (possibly inorretly) that the urrent state does not

a�et the future state. The seond ondition is that the environment is identi�ed, a

ondition that essentially requires that the agent's belief is uniquely determined irre-

spetive of the agent's ation.

1

The third ondition is that all states are visited with

positive probability in the steady state. At least one of these three onditions is typi-

ally satis�ed in appliations. We show by example that if neither of these onditions

is satis�ed, then steady states annot generally be haraterized by an equilibrium

approah where the agent holds a �xed, equilibrium belief, and this is true even if

the agent's model is orretly spei�ed. In ontrast, the modeler is fored to onsider

the more ompliated problem with belief updating, as represented by equation (2).

As we explain in Setion 5, the di�erene in results between the stati and dynami

settings arises from the fat that updating a belief an never derease the agent's on-

tinuation value in the stati ase (beause of a nonnegative value of experimentation),

but it may derease it when both the belief and another state variable hange.

A few other people have also studied the problem of misspei�ed learning by eo-

nomi agents outside the traditional stati setting where one agent repeatedly faes

the same problem every period. Blume and Easley (1998; Setion 5) study a ompet-

itive eonomy. Bohren and Hauser [2018℄ and Frik, Iijima, and Ishii [forthoming℄

study soial learning environments. Rabin and Vayanos [2010℄ and Ortoleva and Snowberg

[2015℄ study environments with misspei�ation in non-iid settings where own ations

do not a�et beliefs (i.e., passive learning). He [2018℄ studies misspei�ation in an

optimal stopping problem. Molavi [2018℄ onsiders a reursive general-equilibrium

framework that nests a lass of maroeonomis models in whih agents learn with

misspei�ed models.

2

With the exeption of some stohasti growth problems (e.g.,

Koulovatianos et al. [2009℄), there are very few appliations of the types of misspei-

�ed, ative learning Markovian deision environments we onsider in this paper. By

1

Identi�ation rules out situations where beliefs are inorret due to lak of experimentation,

whih is a hallmark of the bandit (e.g., Rothshild [1974℄, MLennan [1984℄, Easley and Kiefer [1988℄)

and self-on�rming equilibrium (e.g., Battigalli [1987℄, Fudenberg and Levine [1993℄, Dekel et al.

[2004℄, Fershtman and Pakes [2012℄) literatures.

2

In maroeonomis there are several models where agents make foreasts using statistial models

that are misspei�ed (e.g., Evans and Honkapohja [2001℄ Ch. 13, Sargent [1999℄ Ch. 6).
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proposing a tratable equilibrium approah, we hope to stimulate appliations in this

area.

More generally, the paper is related to the literature whih provides learning

foundations for equilibrium onepts, suh as Nash or self-on�rming equilibrium (see

Fudenberg and Levine [1998℄ for a survey). In ontrast to this literature, we onsider

Markov deision problems and allow for misspei�ed models. Partiular types of

misspei�ations have been studied in extensive form games. Jehiel [1995℄ onsiders

the lass of repeated alternating-move games and assumes that players only foreast

a limited number of time periods into the future; see Jehiel [1998℄ for a learning

foundation.

3

We share the feature that the learning proess takes plae within the

play of the game and that beliefs are those that provide the best �t given the data.

As with muh of this literature, our learning foundation for the equilibrium onept

does not guarantee that behavior onverges to the equilibrium, but only that if it

onverges, it must onverge to an equilibrium; see Setion 5.2 for further disussion.

Finally, a partiular lass of examples that �t our framework involve a typial

oarseness misspei�ation or a type of orrelation neglet that have been studied in

previous frameworks, suh as analogy-based expetation equilibrium (Jehiel [2005℄,

Jehiel and Koessler [2008℄) and Bayesian networks (Spiegler [2016, 2017℄).

The framework and equilibrium notion are presented in Setions 2 and 3. In

Setion 4, we work through several examples. We provide a foundation for equilibrium

in Setion 5 and onlude in Setion 6.

2 Markov deision proesses

We begin by desribing the environment faed by the agent.

De�nition 1. A Markov deision proess (MDP) is a tuple 〈S,X, q0, Q, π, δ〉

where

• S is a nonempty and �nite set of states

• X is a nonempty and �nite set of ations

• q0 ∈ ∆(S) is a probability distribution on the initial state

3

Jehiel and Samet [2007℄ onsider the general lass of extensive form games with perfet infor-

mation and assume that players simplify the game by partitioning the nodes into similarity lasses.
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• Q : S× X → ∆(S) is a transition probability funtion

• π : S× X× S → R is a per-period payo� funtion

• δ ∈ [0, 1) is a disount fator

We sometimes use MDP(Q) to denote an MDP with transition probability funtion

Q and exlude the remaining primitives.

The timing is as follows. At the beginning of eah period t = 0, 1, 2, ..., the

agent observes state st ∈ S and hooses an ation xt ∈ X. (It is straightforward to

inorporate a feasible set of ations that depends on the state.) Then a new state

st+1 is drawn aording to the probability distribution Q(· | st, xt) and the agent

reeives payo� π(st, xt, st+1) in period t. The initial state s0 is drawn aording to

the probability distribution q0. As usual, the objetive of the agent is to hoose a

feasible poliy rule to maximize expeted disounted utility,

∑∞
t=0 δ

tπ(st, xt, st+1).

By the Priniple of Optimality, the agent's problem an be ast reursively as

V (s) = max
x∈X

�

S

{π(s, x, s′) + δV (s′)}Q(ds′|s, x) (3)

where V : S → R is the (unique) solution to the Bellman equation (3).

De�nition 2. An ation x is optimal given s in the MDP(Q) if

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δV (s′)}Q(ds′|s, x̂).

3 Subjetive Markov deision proesses

Our main objetive is to study the behavior of an agent who faes an MDP but is

unertain about the transition probability funtion. We begin by introduing a new

objet to model the problem with unertainty, whih we all the subjetive Markov

deision proess (SMDP). We then de�ne the notion of a Berk-Nash equilibrium of

an SMDP.

3.1 Setup

De�nition 3. A subjetive Markov deision proess (SMDP) is an MDP, 〈S,X, q0, Q, π, δ〉,

and a nonempty family of transition probability funtions, QΘ = {Qθ : θ ∈ Θ}, where
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eah transition probability funtion Qθ : S × X → ∆(S) is indexed by a parameter

value θ ∈ Θ.

We interpret the set QΘ as the di�erent transition probability funtions (or models

of the world) that the agent onsiders possible. We sometimes use SMDP(Q,QΘ) to

denote an SMDP with true transition probability funtionQ and a family of transition

probability funtions QΘ.

De�nition 4. An SMDP(Q,QΘ) is misspei�ed if Q /∈ QΘ; otherwise, it is or-

retly spei�ed. It is subjetively stati if π and all elements in QΘ do not

depend on the urrent state. It is stati if, in addition to being subjetively stati,

the true transition probability funtion Q does not depend on the urrent state.

An SMDP desribes the agent's subjetive pereption of the environment. In

partiular, the agent has a orret pereption of the state spae, the ation spae, and

the payo� funtion, but she is unertain about the transition probability funtion.

The stati ase was previously studied by Esponda and Pouzo [2016℄. An SMDP is

subjetively stati if the agent believes it is stati, even though it might not atually

be a stati environment. This property will play an important role in one of our main

results.

De�nition 5. A regular subjetive Markov deision proess (regular-SMDP)

is an SMDP that satis�es the following onditions

• Θ is a ompat subset of an Eulidean spae.

• Qθ(s
′ | s, x) is ontinuous as a funtion of θ ∈ Θ for all (s, x, s′) ∈ S× X× S.

• There is a dense set Θ̂ ⊆ Θ suh that, for all θ ∈ Θ̂, Qθ(s
′ | s, x) > 0 for all

(s, x, s′) ∈ S× X× S suh that Q(s′ | s, x) > 0.

The �rst two onditions in De�nition 5 plae parametri and ontinuity assump-

tions on the subjetive models.

4

The last ondition plays two roles. First, it rules

4

Without the assumption of a �nite-dimensional parameter spae, Bayesian updating need not

onverge to the truth for most priors and parameter values even in orretly spei�ed statistial

settings (Freedman [1963℄, Diaonis and Freedman [1986℄). Note that the parametri assumption

is only a restrition if the set of states or ations is non�nite, a ase we onsider in some of the

examples.
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out a stark form of misspei�ation by guaranteeing that there exists at least one

parameter value that an rationalize every feasible observation. Seond, it implies

that the orrespondene of parameters that are a losest �t to the true model, to be

de�ned in the next setion, is upper hemiontinuous, whih in partiular will imply

existene of equilibrium.

3.2 Equilibrium

The goal of this setion is to de�ne the notion of Berk-Nash equilibrium of an SMDP.

The goal of the solution onept is to predit a distribution over outomes (meaning

state-ation pairs), m ∈ ∆(S×X), as a funtion of the primitives of the environment.

In Setion 5, we will interpret an equilibrium distribution over state-ation pairs as

the limiting frequeny of state-ation pairs in an environment where the agent is

Bayesian and updates her belief about the transition probability funtion in eah

period.

Notation. For a given probability distribution over state-ation pairs, m ∈ ∆(S×

X), we will denote the marginal over S by mS, the marginal over X by mX, and the

two onditional probability distributions by mX|S and mS|X. We sometimes abuse

notation and eliminate the subsripts when referring to marginals and onditional

distributions if there is no room for onfusion.

The next de�nition will be used to plae onstraints on the agent's equilibrium

belief µ ∈ ∆(Θ) when the equilibrium distribution over state-ation pairs is m.

De�nition 6. The weighted Kullbak-Leibler divergene (wKLD) is a mapping

KQ : ∆(S× X)×Θ → R̄+ suh that for any m ∈ ∆(S× X) and θ ∈ Θ,5

KQ(m, θ) =
∑

(s,x)∈S×X

EQ(·|s,x)

[

ln

(

Q(S ′|s, x)

Qθ(S ′|s, x)

)]

m(s, x).

The set of losest parameter values given m ∈ ∆(S× X) is the set

ΘQ(m) ≡ argmin
θ∈Θ

KQ(m, θ).

5

We follow the standard onvention that ln(0) · 0 = 0.
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The set ΘQ(m) an be interpreted as the set of parameter values that onstitute

the best �t with the true transition probability funtion Q when outomes are drawn

from the distribution m.

Lemma 1. (i) For every m ∈ ∆(S × X) and θ ∈ Θ, KQ(m, θ) ≥ 0, with equality

holding if and only if Qθ(· | s, x) = Q(· | s, x) for all (s, x) suh that m(s, x) > 0.

(ii) For any regular SMDP(Q,QΘ), m 7→ ΘQ(m) is non-empty, ompat valued, and

upper hemiontinuous.

Proof. See Appendix A.1.

We now de�ne equilibrium.

De�nition 7. A probability distribution over state-ation pairs, m ∈ ∆(S × X), is

a Berk-Nash equilibrium of the SMDP(Q,QΘ) if there exists a belief µ ∈ ∆(Θ)

suh that (i) and (ii) below hold,

(i) (optimality) For all (s, x) ∈ S× X suh that m(s, x) > 0, x is optimal given s

in the MDP(Q̄µ), where Q̄µ =
�

Θ
Qθµ(dθ),

(ii) (belief restrition) µ ∈ ∆(ΘQ(m)),

and, moreover, the following ondition holds:

(iii) (stationarity) For all s′ ∈ S, mS(s
′) =

∑

(s,x)∈S×X
Q(s′ | s, x)m(s, x).

Condition (i) in the de�nition of Berk-Nash equilibrium requires ations to be

optimal in the MDP where the transition probability funtion is

�

Θ
Qθµ(dθ). Con-

dition (ii) requires that the agent only puts positive probability on the set of los-

est parameter values given m, ΘQ(m). Finally, to interpret ondition (iii), note

that, for states that our with positive probability, we an replae m(s, x) with

mX|S(x | s)mS(s) in the RHS of the expression. In partiular, we an think of the

agent as following the strategy of hoosing ations aording to the probability dis-

tribution mX|S(· | s) ∈ ∆(X) in state s. Thus, the equilibrium transition probability

funtion over states is given by s 7→ Q(·|s, x)mX|S(x | s), and ondition (iii) simply

says that mS is an invariant distribution for this equilibrium transition probability

funtion. In the speial ase of a stati environment, our de�nition ollapses to the

single-agent de�nition in Esponda and Pouzo [2016℄.

The next result establishes existene of equilibrium in any regular SMDP.
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Theorem 1. For any regular SMDP, there exists a Berk-Nash equilibrium.

Proof. See Appendix A.2.

3.3 Identi�ation

Identi�ation plays an important role in the results that follow. In statistis, iden-

ti�ation refers to the apaity to infer a unique data generating proess from the

observed, exogenous data. In our environment, the notion of identi�ation is a bit

more nuaned, beause the data observed by the agent is endogenous, in the sense

that it depends on the agent's ations. Thus, following Esponda and Pouzo [2016℄, it

is natural to onsider two notions of identi�ation. These notions distinguish between

outomes on and o� the equilibrium path.

De�nition 8. An SMDP is weakly identi�ed givenm ∈ ∆(S×X) if θ, θ′ ∈ ΘQ(m)

implies thatQθ(· | s, x) = Qθ′(· | s, x) for all (s, x) ∈ S×X suh thatm(s, x) > 0; if the

ondition is satis�ed for all (s, x) ∈ S×X, we say that the SMDP is identi�ed given

m. An SMDP is (weakly) identi�ed if it is (weakly) identi�ed for allm ∈ ∆(S×X).

Weak identi�ation implies that, for any equilibrium distributionm, the agent has

a unique belief along the equilibrium path, i.e., for states and ations that our with

positive probability. But there ould be many beliefs onsistent with what happens for

those state-ation pairs that have zero probability. Thus, weak identi�ation allows

one to apture bandit situations, where the agent settles for an ation but may have

inorret beliefs about the bene�ts she would have obtained with a di�erent ation.

Weak identi�ation is a fairly weak ondition and its failure is often assoiated with

knife-edge ases (see, for example, the oin example by Berk [1966℄).

Identi�ation strengthens the de�nition of weak identi�ation by requiring that

beliefs are unique also o� the equilibrium path. Under identi�ation, it is as if the

agent an eventually learn (possibly inorretly) the primitives of the environment

irrespetive of her hoie of ations.

Proposition 1. Consider a orretly spei�ed and identi�ed SMDP with orrespond-

ing MDP(Q). If m is a Berk-Nash equilibrium of the SMDP then, for all (s, x) in the

support of m, x is optimal given s in the MDP(Q).
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Proof. Suppose m is a Berk-Nash equilibrium. Then there exists µ ∈ ∆(ΘQ(m)) suh

that, for all (s, x) in the support of m, x is optimal given s. Beause the SMDP is

orretly spei�ed, there exists θ∗ suh that Qθ∗ = Q and, therefore, by Lemma 1(i),

θ∗ ∈ ∆(ΘQ(m)). Then, by identi�ation, any θ̂ ∈ ΘQ(m) satis�es Qθ̂ = Qθ∗ = Q,

implying that, for all (s, x) in the support of m, x is also optimal given s in the

MDP(Q).

Proposition 1 says that, in environments where the agent is unertain about the

transition probability funtion but her subjetive model is both orretly spei�ed

and identi�ed, then Berk-Nash equilibrium orresponds to the solution of the MDP

under orret beliefs about the transition probability funtion.

4 Examples

Appliations in the literature on agents with misspei�ed models have for the most

part onentrated on stati environments. We hope that the equilibrium onept

developed in this paper enourages researhers to explore misspei�ation in the types

of dynami environments that are entral to many eonomi appliations. For this

purpose, we pik three standard dynami environments and, for eah ase, introdue

a novel misspei�ation and show how the equilibrium onept an be used to derive

onrete preditions. Overall, we hope to onvey that Berk-Nash equilibrium an

help expand the sope of the lassial dynami programming approah in eonomis.

Some of the examples in this setion assume, for onveniene, a non-�nite set

of ations and states. While the equilibrium onept extends in a straightforward

manner to non-�nite settings, the proofs of the results we provide in the next setion

rely on �niteness assumptions and we leave the extension to non-�nite settings for

further work.

4.1 Dynami e�ort task

We use the following stylized version of a dynami e�ort task to illustrate the steps

required to �nd a Berk-Nash equilibrium.

MDP: In eah period t, the agent hooses whether to put high or low e�ort in

a task, xt ∈ X = {H,L}, where H represents high e�ort and L low e�ort. The task

then fails or sueeds, st+1 ∈ S = {0, 1}, where 0 denotes failure and 1 suess. The
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payo� is π(L, st+1) = st+1 under low e�ort and π(H, st+1) = st+1−c under high e�ort,

where c is the ost of high e�ort. The probability of a suess is 1 if the agent puts

high e�ort: Q(1 | s,H) = 1 for all s ∈ {0, 1}. The probability of suess if the agent

puts low e�ort depends on the state: The probability of suess is q0 ≡ Q(1 | 0, L)

if the last task resulted in a failure and q1 ≡ Q(1 | 1, L) if it resulted in a suess.

This simple setup aptures several problems where the agent's suess depends not

only on her ation but also on a previous suess or failure. For example, a �rm

that sells a produt today may inrease its hanes of selling a produt tomorrow due

to word-of-mouth advertising. Or an agent who sueeds on a task today may feel

motivated and �nd it easier to sueed on the task tomorrow for the same level of

e�ort.

For onreteness, we assume that

0 < q0 < 1− c < q1 < 1. (4)

In partiular, the probability of a suess under low e�ort is higher if the past task

was a suess ompared to failure. A myopi agent who knows the primitives will

�nd it optimal to hoose H in state s = 0 (beause q0, the expeted payo� from L,

is lower than 1− c, the payo� from H) and L in state s = 1 (beause 1− c < q1). It

is also relatively easy to see that this strategy is optimal irrespetive of the disount

fator of the agent.

SMDP. The agent believes, inorretly, that the e�ort task is not dynami. For-

mally, QΘ = {Qθ : θ ∈ Θ}, where Θ = [0, 1] and, for all θ ∈ Θ, Qθ(1 | s,H) = 1 and

Qθ(1 | s, L) = θ for all s ∈ {0, 1}. In partiular, the agent knows that the probability

of suess is one if she puts high e�ort, but the agent does not know the probability

of suess if she puts low e�ort. Moreover, the agent believes that the probability of

suess under low e�ort is independent of the urrent state. For example, the �rm

might be unaware that word-of-mouth advertising is important or the agent may fail

to take into aount how performane todays a�ets her motivation tomorrow. This

is an example of a subjetively stati SMDP beause the ontemporaneous payo�

funtion π and the pereived transitions do not depend on the urrent state.

Equilibrium. For simpliity, we restrit attention to equilibria satisfying the

natural re�nement that the agent's ation does not depend on the state: mL ≡

mX|S(L | 0) = mX|S(L | 1) and 1 − mL = mX|S(H | 0) = mX|S(H | 1). This is a
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natural re�nement beause the agent does not think the urrent state matters, but it

potentially leaves out mixed-strategy equilibria where the agent is indi�erent between

the two ations and for some reason deides to use a tie-breaking rule that depends

on the state.

Stationarity. Condition (iii) in the de�nition of Berk-Nash equilibrium requires

mS(1) =
∑

(s,x)∈S×X

Q(1 | s, x)mX|S(x | s)mS(s)

= (1−mL) +mL (q0mS(0) + q1mS(1)) ,

and, solving this equation for mS(1), we obtain the stationary probability of s = 1 as

a funtion of the agent's behavior, mL:

mS(1) =
1−mL(1− q0)

1−mL(q1 − q0)
. (5)

Beliefs. The wKLD is given by

KQ(m, θ) =
∑

(s,x)∈S×X

mX|S(x | s)mS(s)
∑

s′∈S

Q(s′ | s, x) ln
Q(s′ | s, x)

Qθ(s′ | s, x)

= −mL{mS(0)(q0 ln θ + (1− q0) ln(1− θ))

+mS(1)(q1 ln θ + (1− q1) ln(1− θ))}+ Const,

where Const is a term that does not depend on θ.

If mL > 0, then

θQ(m) = (1−mS(1))q0 +mS(1)q1 (6)

is the unique parameter value that minimizes the wKLD funtion. Intuitively, (6) is a

weighted average of the probabilities that low e�ort yields a suess in eah state, q0

and q1, where the weights are given by the stationary probabilities of eah state. If,

however, mL = 0, the wKLD is onstant in the parameter and any θ ∈ Θ minimizes

wKLD.

We will make a seond re�nement and restrit attention to equilibria where (6) is

the unique minimizer even if L is hosen with probability zero, mL = 0. One rationale

is that the agent has a small but vanishing probability of trembling, and, onsistent

with the �rst restrition, this probability does not depend on the state.
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Optimality. Beause the agent believes that the problem is stati, the optimal

strategy is to hoose the ation that maximizes urrent period's payo�. Let

D(θ) ≡ θ − (1− c) (7)

denote the pereived expeted payo� di�erene of hoosing L vs. H under the belief

that the parameter value is θ with probability 1. If D(θ) > 0, then L is the unique

optimal strategy: mL = 1. If, on the other hand, D(θ) < 0, then H is the unique

optimal strategy: mL = 0. Finally, if D(θ) = 0, there is no restrition on mL.

Equilibrium. By equation (5) and assumption (4), mS(1) is ontinuous and de-

reasing as a funtion of mL. Intuitively, the higher the probability of low e�ort, the

lower is the stationary probability of being in the state s = 1 where the task is su-

essful. Also by equation (6) and assumption (4), θQ(m) is ontinuous and inreasing

as a funtion of mS(1). Thus, we an ombine equations (5) and (6) to produe a

mapping whih, in a slight abuse of notation, we denote by mL 7→ θQ(mL) that is

ontinuous and dereasing: As mL inreases, the probability of state s = 1, mS(1),

dereases, whih in turn yields a derease in θQ.

Finally, we take the mapping mL 7→ θQ(mL) together with equation (7) to form

the mapping whih, in a slight abuse of notation, we denote by mL 7→ D(mL), where

D(mL) = θQ(mL) − (1 − c) is the agent's pereived expeted payo� di�erene of

hoosing L vs. H under the belief that minimizes KLD when the agent hooses no

e�ort with probability mL. Simple algebra (ombining equations (5), (6), and (7))

shows that

D(mL) = (q1 −mL(q1 − q0))/(1−mL(q1 − q0))− (1− c). (8)

The mapping mL 7→ D(mL) is dereasing beause, as explained earlier, mL 7→

θQ(mL) is dereasing. To �nd the equilibria, it is onvenient to �rst ompute D(0)

and D(1). Simple algebra yields D(0) = q1 − (1− c) > 0. Intuitively, if mL = 0 then

the agent is spending all the time in state s = 1, and so a small tremble resulting

in ation L ours in a state where the probability of suess is q1. Thus, a small

tremble leads the agent to believe that the probability of suess under L is q1. Sine

q1 > 1−c, the agent would then like to deviate and hoose L with positive probability.

As mL inreases, however, state s = 0 beomes more likely and the agent beomes

more pessimisti about the probability of a suess under L.

14



1m∗
L mL

b

D(·)

Figure 1: Equilibrium of the dynami e�ort environment

The most pessimisti belief for the agent is at mL = 1. Simple algebra yields

D(1) = q0/(1− (q1− q0))− (1− c). If the primitives (q0, c, q1) are suh that D(1) ≥ 0,

then there is a unique equilibrium where m∗
L = 1. If, however, D(1) < 0 then there

is a unique equilibrium and it given by the mixed ation m∗
L ∈ (0, 1) that solves

D(m∗
L) = 0. Using the expression in (8), it is easy to see that the mixed equilibrium

ation is given by m∗
L = (q1 − (1− c))/(c(q1 − q0)).

Figure 1 shows an example where the equilibrium ation is mixed. In addition

to demonstrating the mehanis underlying the equilibrium onept, this example

illustrates the importane of allowing the agent to take mixed ations, a feature that

is not needed in standard dynami optimization settings.

4.2 Stohasti growth with orrelated shoks

Stohasti growth models have been entral to studying optimal intertemporal alloa-

tion of apital and onsumption sine the work of Brok and Mirman [1972℄. Freixas

[1981℄ and Koulovatianos et al. [2009℄ assume that agents learn the distribution over

produtivity shoks with orretly spei�ed models. We follow Hall, Robert E. [1997℄

and subsequent literature in inorporating shoks to both preferenes and produ-

tivity. We show that there is underinvestment in equilibrium whenever shoks are

positively orrelated but agents fail to aount for this orrelation.
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MDP. In eah period t, an agent observes st = (yt, zt) ∈ S = R+×{L,H}, where

yt is wealth and zt is an i.i.d. utility shok, and hooses how muh wealth to save,

xt ∈ [0, yt] ⊆ X = R+, onsuming the rest. Current period utility is π(yt, zt, xt) =

zt ln(yt − xt). Wealth next period, yt+1, is given by

ln yt+1 = α∗ + β∗ ln xt + εt, (9)

where εt = γ∗zt + ξt is an unobserved i.i.d. produtivity shok, ξt ∼ N(0, 1), and 0 <

δβ∗ < 1, where δ ∈ [0, 1) is the disount fator. The utility shok an be interpreted

as a shok to home or non-market prodution tehnologies (e.g., Benivenga [1992℄).

We assume that γ∗ > 0, so that the utility and produtivity shoks are positively

orrelated. For example, tehnologial advanes inrease produtivity of both market

and non-market ativities. Let 0 < L < H and let q ∈ (0, 1) be the probability that

the shok is H . Formally, Q(y′, z′ | y, z, x) is suh that y′ and z′ are independent, y′

has a log-normal distribution with mean α∗ + β∗ ln x + γ∗z and unit variane, and

z′ = H with probability q.

SMDP. The agent believes that

ln yt+1 = α + β ln xt + εt, (10)

where εt ∼ N(0, 1) and is independent of the utility shok. For simpliity, we assume

that the agent knows the distribution of the utility shok, and is unertain about

θ = (α, β) ∈ Θ = R2
. The subjetive transition probability funtion Qθ(y

′, z′ |

y, z, x) is suh that y′ and z′ are independent, y′ has a log-normal distribution with

mean α + β ln x and unit variane, and z′ = H with probability q. The agent has a

misspei�ed model beause she believes that the produtivity and utility shoks are

independent when in fat γ∗ 6= 0.

Equilibrium. Optimality. The Bellman equation for the agent is

V (y, z) = max
0≤x≤y

z ln(y − x) + δE [V (Y ′, Z ′) | x]

and it is straightforward to verify that the optimal strategy is to invest a fration

of wealth that depends on the utility shok and the unknown parameter β, i.e., x =

Az(β) · y, where AL(β) =
δβ((1−q)L+qH)

(1−δβ(1−q))H+δβ(1−q)L
and AH(β) =

δβ((1−q)L+qH)
δβqH+(1−δβq)L

< AL(β),

provided that βδ < 1, whih will be true in equilibrium. For the agent who knows the
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primitives, the optimal strategy is to invest frations AL(β
∗) and AH(β

∗) in the low

and high state, respetively. Sine β 7→ Az(β) is inreasing, the equilibrium strategy

of a misspei�ed agent an be ompared to the optimal strategy by omparing the

equilibrium belief about β with the true β∗
.

Beliefs and stationarity. Let A = (AL, AH), with AH < AL, represent a strategy,

where Az is the proportion of wealth invested given utility shok z. Beause the

agent believes that εt is independent of the utility shok and normally distributed,

the minimizers of the wKLD funtion are the estimands of a linear regression model,

whih are unique, and, therefore, this SMDP is identi�ed provided the agent invests

more than zero with positive probability.

6

In partiular, for a strategy represented

by A = (AL, AH), the parameter value β̂(A) that minimizes wKLD is

β̂(A) =
Cov(lnY ′, lnX)

V ar(lnX)
=

Cov(lnY ′, ln(AZY ))

V ar(ln(AZY ))

= β∗ + γ∗ Cov(Z, lnAZ)

V ar(lnAZ) + V ar(lnY )
.

where Cov and V ar are taken with respet to the (true) distribution of (Y, Z). Sine

AH < AL, then Cov(Z, lnAZ) < 0. Therefore, the assumption that γ∗ > 0 implies

that the bias β̂(A) − β∗
is negative and its magnitude depends on the strategy A.

Intuitively, the agent invests a larger fration of wealth when z is low, whih happens

to be during times when ε is also low.

Equilibrium. We establish that there exists at least one equilibrium with pos-

itive investment by showing that there is at least one �xed point of the mapping

β 7→ β̂(AL(β), AH(β)). This mapping is ontinuous and satis�es β̂(AL(0), AH(0)) =

β̂(AL(1/δ), AH(1/δ)) = β∗
and β̂(AL(β), AH(β)) < β∗

for all β ∈ (0, 1/δ). Then,

sine δβ∗ < 1, there is at least one �xed point βM
, and any �xed point satis�es

βM ∈ (0, β∗). Thus, the misspei�ed agent underinvests in equilibrium ompared to

the optimal strategy.

7

The onlusion is reversed if γ∗ < 0, illustrating how the frame-

6

From equation (10) and Gaussianity of the residuals, the wKLD is proportional to the expeted

(under the true measure) square of the residual in expression (10). Thus, the minimizers of the

wKLD oinide with the values of (α, β) that provide the best �t under this loss when the data is

distributed aording to the true probability measure.

7

It is also an equilibrium not to invest, A = (0, 0), supported by the belief β∗ = 0, whih
annot be dison�rmed sine investment does not take plae. But this equilibrium is not robust

to experimentation (e.g., it does not survive a re�nement where the belief when not investing is

required to be the limit of the belief as the fration invested goes to zero).
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work provides preditions about beliefs and behavior that depend on the primitives

(as opposed to simply postulating that the agent is over or under-on�dent about

produtivity).

4.3 Prodution with unertain ost

Finally, we onsider an agent who produes with unertain osts. This example il-

lustrates two features of the framework. First, unlike the previous examples, the

agent knows the dynamis governing the state variable. Instead, the agent has un-

ertainty about the per-period payo�. The example shows how to inorporate this

kind of unertainty into the framework. Seond, in ontrast to the previous examples,

where the agent diretly omitted a variable or negleted a orrelation, we onsider a

ase where the agent inorporates all relevant variables into her model but uses an

inorret funtional form.

MDP. Eah period t, an agent observes a produtivity shok z ∈ Z = {z1, ..., zK} ⊂

R+ and hooses an input x ∈ X ⊂ R+. As a result, the agent obtains a payo� of

z ln x − c(x) in that period, where c(x) = φ(x)ǫ is the ost of hoosing x, and ǫ is a

random, independent ost shok distributed aording to the distribution p∗, whih

has support equal to [0,∞). Let Q(z′ | z) be the probability that tomorrow's pro-

dutivity shok is z′ given the urrent shok z. We assume that there is a unique

stationary distribution over these produtivity shoks, denoted by q = (q1, ..., qK).

SMDP. The agent knows all the primitives exept the ost funtion c(·). The

agent believes that cθ(x) = xǫ and ǫ ∼ pθ where pθ has support equal to [0,∞).

For onreteness, we assume that ǫ follows an exponential distribution, pθ(ǫ) =

(1/θ)e−(1/θ)ǫ
. In partiular, the agent's model is misspei�ed if either ost is non-

linear, i.e., φ(·) is nonlinear, or the true distribution over ost shoks, p∗, does not

belong to the exponential family.

The framework presented in this paper assumes that the agent knows the per-

period payo� funtion and may be unertain about the transition funtion. To �t

this example into the framework, we simply let the ost c be part of the state as

follows:

V (z, c) = max
x

�

(zf(x)− c′ + δV (z′, c′))Q(dz′ | z)QC(dc′ | x).

The variable c′ is the unknown ost of prodution at the time the agent has to hoose
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x. Its distribution is given by QC(dc′ | x), whih is the distribution of c′ = c(x)

as desribed above. The agent knows Q but does not know QC
. In partiular, the

agent has a parametri family of transitions, where QC
θ (dc

′ | x) is the distribution of

c′ = cθ(x).

Equilibrium. Optimality. Suppose the agent has a degenerate belief on some θ.

Beause the transition of c′ does not depend on c and the transition of z′ does not

depend on x, the agent's optimization problem redues to the following simple stati

optimization problem: maxx z ln x − xEθ [ǫ]. Noting that Eθ [ǫ] = θ, it follows that

the optimal input hoie in state zj is

xj = zj/θ (11)

for j ∈ {1, ..., K}.

Stationarity. The stationarity ondition implies that the marginal of m over Z

is equal to the stationary distribution over z, whih is given by q = (q1, ..., qK).

Therefore, the stationary distribution over X, denoted bymX, is given bymX(xj) = qj ,

where xj satis�es equation (11), and it is equal to zero otherwise.

Beliefs. The part of the wKLD funtion that depends on θ is given by

∑

x

EQ(·|x)

[

logQC
θ (c

′ | x)
]

mX(x) =
∑

j

EQ(·|xj) [log pθ (c
′/xj)] qj

=
∑

j

EQ(·|xj)

[

−
1

θ
(c′/xj)− ln θ

]

qj

= −
1

θ
Ep∗ [ǫ]

∑

j

(φ(xj)/xj)qj − ln θ.

There is a unique parameter value θ that maximizes this expression, and so this

SMDP is identi�ed. This unique minimizer is given by

θ = Ep∗ [ǫ]
∑

j

(φ(xj)/xj)qj . (12)

The RHS of this expression is a weighted average of the expeted average osts. This

expression depends on the assumption that ǫ follows an exponential distribution, and

it would di�er for di�erent families of distributions. For example, for the ase of the

log-normal distribution, the average ost should be replaed by the logarithm of the
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average ost.

Equilibrium. To solve for equilibrium, we �rst ombine equations (11) and (12) to

obtain

θ∗ = Ep∗[ǫ]
∑

j

(θ∗φ(zj/θ
∗)/zj)qj (13)

A solution θ∗ to equation (13) orresponds to an equilibrium belief. To �nd the

equilibrium ation as a funtion of the shok, we simply replae the equilibrium belief

θ∗ into the optimality ondition (11). To illustrate, suppose that the true ost funtion

is quadrati, i.e., φ(x) = x2
. Then there is a unique solution to (13) and, therefore, a

unique equilibrium belief θ∗ = (Ep∗ [ǫ]Eq[z])
1/2

and ation

x∗
j = zj/(Ep∗ [ǫ]Eq[z])

1/2. (14)

We an ontrast this expression with the optimal ation of an agent who knows the

orret primitives and solves maxx z ln x−x2Ep∗ [ǫ], thus obtaining the optimal ation

xopt
j = (zj/(2Ep∗[ǫ]))

1/2 . (15)

The optimal ation depends on the produtivity shok, while the optimal ation for

the misspei�ed agent depends on both the shok and the average shok. The reason

is that the agent inorretly believes the marginal ost is onstant, and learns this

marginal ost by averaging over the marginal osts experiened in equilibrium, and

the distribution over these experiened osts depends on the stationary distribution

over all shoks. Comparing (14) and (15), we also observe that the misspei�ed

agent hooses ations lower than optimal if zj ≤ Eq[z]/2 and higher than optimal if

zj ≥ Eq[z]/2. Intuitively, the agent overestimates the marginal ost of low ations, and

these low ations are taken when the shok is low. Similarly, the agent underestimates

the marginal ost of high ations, and these ations are taken when the shok is high.

5 Equilibrium foundation

Following the tradition of providing learning foundations for equilibrium onepts, in

this setion we study the problem of an agent who faes a regular SMDP, starts with
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a prior µ0 ∈ ∆(Θ) over the set of models of the world Θ, and updates the prior in

eah period as a result of observing the urrent state, her ation, and the new state.

Our main objetive is to understand under whih onditions the agent's steady state

behavior an be represented by a Berk-Nash equilibrium.

5.1 Bayesian learning in SMDPs

Consider an agent who faes a regular SMDP and has a prior µ0 ∈ ∆(Θ), whih

is assumed to have full support. The prior is updated in eah period using Bayes'

rule, where µ′ = B(s, x, s′, µ) is the posterior for any prior µ, urrent state s, ation

x, and realized future state s′, and, for any (s, x, s′) ∈ S × X × S, the Bayesian

operator B(s, x, s′, ·) : Ds,x,s′ → ∆(Θ) is de�ned as follows: For all A ⊆ Θ Borel,

B(s, x, s′, µ)(A) =
�

A
Qθ(s

′ | s, x)µ(dθ)/
�

Θ
Qθ(s

′ | s, x)µ(dθ) for any µ ∈ Ds,x,s′,

where Ds,x,s′ = {p ∈ ∆(Θ):
�

Θ
Qθ(s

′ | s, x)p(dθ) > 0}.

By the Priniple of Optimality, the agent's problem an be ast reursively as

W (s, µ) = max
x∈X

�

S

{π(s, x, s′) + δW (s′, µ′)} Q̄µ(ds
′|s, x), (16)

where Q̄µ =
�

Θ
Qθµ(dθ), µ

′ = B(s, x, s′, µ) is next period's belief, updated using

Bayes' rule, and W : S×∆(Θ) → R is the (unique) solution to the Bellman equation

(16). Compared to the ase where the agent knows the transition probability funtion,

the agent's belief about Θ is now part of the state spae.

De�nition 9. A poliy funtion is a funtion f : S × ∆(Θ) → ∆(X), where

f(x | s, µ) denotes the probability that the agent hooses x if she is in state s and

her belief is µ. A poliy funtion f is optimal if, for all s ∈ S, µ ∈ ∆(Θ), and x ∈ X

suh that f(x | s, µ) > 0,

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δW (s′, B(s, x̂, s′, µ))} Q̄µ(ds
′|s, x̂).

Let h = (s0, x0, ..., st, xt, ...) represent an in�nite history of state-ation pairs

and let H ≡ (S × X)∞ represent the spae of in�nite histories. For every t, let

µt : H → ∆(Θ) denote the agent's belief at time t, de�ned reursively by µt(h) =

B(st−1, xt−1, st, µt−1(h)) whenever B is the Bayesian operator, and arbitrary other-

wise. Heneforth, we drop the history h from the notation.
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In eah period t, there is a state st and a belief µt, and the agent hooses a (possibly

mixed) ation f(· | st, µt) ∈ ∆(X).8 After an ation xt is realized, the state st+1 is

drawn from the true transition probability. The agent observes the realized ation and

the new state and updates her belief to µt+1 using Bayes' rule. The primitives of the

problem (inluding the initial distribution over states, q0, and the prior, µ0 ∈ ∆(Θ))

and a poliy funtion f indue a probability distribution over H that is de�ned in a

standard way; let P
f
denote this probability distribution over H.

We now de�ne outomes as random variables. For every t, we de�ne the frequeny

of state-ation pairs at time t to be a funtion mt : H → ∆(S× X) suh that, for all

h, and (s, x) ∈ S× X,

mt(h)(s, x) =
1

t

t
∑

τ=0

1(s,x)(sτ , xτ )

is the frequeny of times that the outome (s, x) ours up to time t. One reasonable

riteria to laim that the agent has reahed a steady-state is that the time average of

outomes onverges.

The next result establishes that, if the frequeny of state-ation pairs onverges

to m, then beliefs beome inreasingly onentrated on ΘQ(m).

Lemma 2. Let Q denote the true transition probability funtion and f the poliy

funtion. Suppose that (mt)t onverges to m for all histories in a set H ⊆ H suh that

Pf (H) > 0. Then, for all open sets U ⊇ ΘQ(m), limt→∞ µt (U) = 1 Pf
-a.s.- in H.

Proof. See Appendix A.3.

The proof adapts the proof of Lemma 2 by Esponda and Pouzo [2016℄ to dynami

environments and the reader is referred to that paper for an intuitive explanation of

the result.

9

The following result provides a learning foundation for the notion of Berk-Nash

equilibrium of an SMDP.

8

In partiular, it would be straightforward to introdue payo� perturbations to our environment

so that the agent's behavior at time t would be given by a nondegenerate distribution over ations.

9

The seminal result providing asymptoti haraterization of Bayesian beliefs when the data

generating proess is exogenous (i.e., absent any ations) is due to Berk [1966℄; see also

Bunke and Milhaud [1998℄ and Shalizi [2009℄ for extensions.
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Theorem 2. Let f be an optimal poliy funtion. Suppose that (mt)t onverges to m

with Pf
-positive probability and that the SMDP is weakly identi�ed given m. Suppose

also that one of the following onditions hold:

1. The SMDP is subjetively stati.

2. The SMDP is identi�ed given m.

Then m is a Berk-Nash equilibrium of the SMDP.

Proof. See Appendix A.4.

Theorem 2 provides a learning justi�ation for Berk-Nash equilibrium. The main

idea behind the proof is as follows. For eah state-ation pair (s, x) in the support

of m, there exists a subsequene of state-ation pairs and beliefs suh that (s, x) is

played along the entire subsequene. Moreover, we an �nd a sub-subsequene where

the belief onverges; let µs,x ∈ ∆(S × X) denote this limiting belief under whih

(s, x) realizes. Sine (mt)t onverges to m, we an apply Lemma 2 to onlude that

µs,x ∈ ∆(ΘQ(m)). Thus, by optimality of f and the upper hemiontinuity of the

orrespondene of optimal ations, it follows that for any state s and any ation x

in the support of m(· | s), x is optimal in the dynami optimization problem with

urrent belief µs,x, i.e.,

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δW (s′, µ′)} Q̄µs,x
(ds′|s, x̂). (17)

Consider �rst the ase where the SMDP is subjetively stati. In this ase, the

value funtion W only depends on the agent's belief, and, slightly abusing notation,

(17) implies that

EQ̄µs,x (·|x)
[π(x, S ′) + δW (B(x, S ′, µs,x))] ≥ EQ̄µs,x (·|y)

[π(y, S ′) + δW (B(y, S ′, µs,x))]

(18)

for any other ation y. By weak identi�ation, B(x, s′, µs,x) = µs,x for all s′ that

our with positive probability aording to µs,x, and so the LHS of (18) beomes

EQ̄µs,x (·|x)
[π(x, S ′) + δW (µs,x))]. Next, we add and subtrat δW (µs,x) from the RHS

of (18) to obtain

EQ̄µs,x (·|y)
[π(y, S ′) + δW (µs,x)] + δEQ̄µs,x (·|y)

[W (B(y, S ′, µs,x))−W (µs,x)] . (19)
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The seond term in (19) is what is known in the literature as the value of experimen-

tation: It is the di�erene in net present value between starting next period with up-

dated beliefB(y, S ′, µs,x), whih depends on the ation y and the random realization of

S ′
, and starting next period with the urrent belief µs,x. By the Martingale property of

Bayesian updating and the onvexity of the value funtion, it follows that the value of

experimentation is nonnegative; formally, EQ̄µs,x (·|y)
[W (B(y, S ′, µs,x))−W (µs,x)] ≥

W (EQ̄µs,x (·|y)
[B(y, S ′, µs,x)])−W (µs,x) = 0. It then follows that EQ̄µs,x (·|x)

[π(x, S ′)] ≥

EQ̄µs,x (·|y)
[π(y, S ′)]. Thus, for any (s, x) in the support of m, there exists a belief µs,x

suh that x is optimal when the belief is �xed at µs,x. Finally, weak identi�ation im-

plies that all the beliefs in {µs,x : m(s, x) > 0} yield the same probability distribution

over next period's state onditional on an ation in the support of mX. Therefore, we

an replae all these beliefs with a single belief that belongs to ∆(ΘQ(m)), so that

onditions (i) and (ii) in the de�nition of equilibrium are satis�ed for the speial ase

of subjetively stati SMDPs.

More generally, we an prove the same result by assuming identi�ation. If the

SMDP is identi�ed, we an essentially think of ∆(ΘQ(m)) being a degenerate belief

on a spei� parameter value, whih in turn implies two properties: First, µs,x does

not depend on s, x; denote it by µ. Seond, sine the belief µ is degenerate, it will

forever remain �xed, and so (17) implies that x is optimal given s in the MDP(Q̄µ),

where the belief is �xed at µ. Thus, one again, onditions (i) and (ii) in the de�nition

of Berk-Nash equilibrium are satis�ed.

Finally, the reason why ondition (iii) in the de�nition of Berk-Nash equilibrium

holds an be desribed as follows. If the agent were using strategy mt to make de-

isions, then the probability distribution over states next period would be given by

Q[mt](·) ≡
∑

(s,x)∈S×X
Q(· | s, x)mt(s, x). Sine mt onverges to m and the operator

Q[·] is ontinuous, the asymptoti evolution of the state is given by the probabil-

ity distribution Q[m](·). Sine mt onverges, then it must onverge to a stationary

distribution of the Markov proess over states de�ned by this operator.

In the remainder of this setion, we investigate the extent to whih we an extend

the previous arguments to ases where identi�ation fails or the SMDP is not subje-

tively stati. We begin by noting that the de�nition of steady state used in Setion

5.1 (the onvergene of time averages) is di�erent from the de�nition used elsewhere.

In previous work (e.g., Fudenberg and Kreps [1993℄, Esponda and Pouzo [2016℄), it is

ommon to de�ne a steady state as a situation where the agent's intended behavior

24



onverges. In Theorem 2, all we need is that the time average onverges, but, beause

of the dynami nature of the environment, we need the onvergene of the frequeny

of state-ation pairs, not just of the ations. In partiular, this type of onvergene

does not guarantee that the agent's intended behavior onverges, but only that its fre-

queny does. We now show that if we strengthen the notion of steady state to require

that both intended behavior and time averages onverge, then a steady state orre-

sponds to a Berk-Nash equilibrium provided that all states are visited with positive

probability.

10

We de�ne a strategy σ : S → ∆(X) to be a mapping between states and probability

distribution over ations. Let Σ denote the set of all strategies. For a �xed poliy

funtion f and for every t, let σt : H → Σ denote the (time-t intended) strategy of

the agent, de�ned by setting

σt(h) = f(· | ·, µt(h)) ∈ Σ.

Theorem 3. Let f be an optimal poliy funtion. Suppose that (σt)t onverges and

that (mt)t onverges to m with Pf
-positive probability and that the SMDP is weakly

identi�ed given m. Suppose also that m(s) > 0 for all s ∈ S. Then m is a Berk-Nash

equilibrium of the SMDP.

Proof. See Appendix A.5.

The main idea behind the proof is as follows. We an always �nd a subsequene of

posteriors that onverges to some µ∗
and, by Lemma 2 and the fat that the agent's

intended strategy (σt)t onverges to some σ, it follows that σ must solve the dynami

optimization problem for beliefs onverging to µ∗ ∈ ∆(ΘQ(m)). A key di�erene

with the proof of Theorem 3 is that we an use the fat that the agent's intended

behavior onverges to onlude that the same belief µ∗
justi�es all of the agent's

limiting ations. Next, it is not di�ult to show that the limiting behavior of the

agent in state s must orrespond to the onditional distribution of the limiting time

average, i.e, σ(· | s) = m(· | s). Sine all states are visited with positive probability

aording to m, it follows that there exists a belief µ∗
suh that for every (s, x) with

m(s, x) > 0, x is optimal in the dynami optimization problem with urrent belief

10

We are unable to show if this result is also true when intended behavior does not onverge.
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µ∗
. The �nal step is to show that this type of optimality implies optimality in the

dynami optimization problem where the belief is �xed at µ∗
.

For this �nal step, we rely on the assumption that all states are visited with

positive probability, and the argument is as follows. For eah s̃, let xs̃ denote an

ation that is played in the limit when the state is s̃, i.e., m(s̃, xs̃) > 0. Consider the

strategy where the agent plays xs̃ in eah state s̃. By weak identi�ation, the belief

never hanges and the value of following this strategy does not depend on the spei�

belief in ∆(ΘQ(m)), sine, by weak identi�ation, all parameter values in ΘQ(m) give

rise to the same distribution over next period's states. By the previous optimality

argument, we know that ation xs is optimal in state s given belief µ∗
. This means

that xs maximizes the sum of today's payo� and the ontinuation value, where the

ontinuation value is the value of playing xs̃ in eah state s̃ in the future. Consider

an alternative ation y. This alternative ation yields some payo� today and then a

ontinuation value where it is possible that the agent's belief hanges. This possibly

new belief, all it µ′
, must still have support in ΘQ(m), sine the original belief µ∗

has

support in ΘQ(m). Consider the ontinuation value of this ation y with a new belief

µ′
and a new state. The agent an still, from that moment on, follow the strategy of

playing xs̃ in eah state s̃ in the future. Thus, the ontinuation value from playing y

is at least the same or higher as the ontinuation value from xs. Therefore, the fat

that xs is optimal when the nonnegative value of information from playing a di�erent

ation y is taken into aount implies that xs must also be optimal when the belief is

�xed at µ∗
and there is no further value from learning.

The argument in the proof of Theorem 3 relies on the assumption that all states are

visited with positive probability. This assumption allows us to onstrut a strategy

(to play xs̃ in eah state s̃) that provides a lower bound to the payo� that the agent

ould obtain from hoosing an ation that ould potentially lead to an updated belief.

We onlude with an example illustrating that this assumption is important. In

partiular, the following example shows a ase where only one state is reahed in

steady state and, even though the agent's behavior and the time average onverge,

this steady state is not a Berk-Nash equilibrium.

example. There are 5 states, sI , s0, s1, sk, and sopt. In states s0 and s1, the agent

gets utility 0 and 1, respetively, and then returns to the initial state sI . In state sk,

the agent gets utility k and then returns to the initial state sI . In the initial state

sI , the agent has four possible ations, A, B, S, and O. Irrespetive of her ation, she
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gets utility 2/3 in state sI . If she hooses A, she goes to state s0 with probability θ

and s1 with 1− θ, while if she hooses B, she goes to s0 with probability 1− θ and s1

with probability θ. If she hooses S, she remains in state sI . In other words, A and

B are risky alternatives that yield utility 0 or 1 tomorrow, and S is a safe ation that

yields 2/3 tomorrow. Moreover, the agent eventually returns to sI . Formally, the

payo�s are π(sI , x) = 2/3 and π(sj, x) = j for all x, and the transitions are Qθ(s0 |

sI , A) = Qθ(s1 | sI , B) = θ, Qθ(s1 | sI , A) = Qθ(s0 | sI , B) = Qθ(s0 | sI , O) = 1 − θ,

and Qθ(s
I | sj, x) = 1 for all j ∈ {0, 1, k} and all x.

The agent an also take ation O in state sI , whih potentially generates the

option to make a risky but more pro�table investment yielding k in the future. Taking

ation O in state sI leads the agent to state sopt with probability θ and state s0 with

probability 1 − θ. In state sopt, the agent gets a utility ost (loses) 1/3 irrespetive

of her ation. If she hooses to make a risky investment (R, whih we an assoiate

with ations A, B, and O in order to have the same set of ations for all states),

with probability 1 − θ she goes to state sk, and therefore gets utility k, and with

probability θ she goes to state s0, and therefore gets utility zero. If she hooses the

safe option (S), then she goes to state sI next period. In any ase, she always ends

up returning to state sI . Formally, the payo�s are π(sopt, x) = −1/3 for all x and the

transitions are Qθ(s
opt | sI , O) = Qθ(s0 | sopt, R) = θ, Qθ(sk | sopt, R) = 1 − θ, and

Qθ(s
I | sopt, S) = 1. Figure 2 depits all the states, ations, and transitions for this

example.

Suppose that the agent knows all the primitives exept the value of θ. Moreover,

suppose that the true value of θ is either 0 or 1, and that the SMDP is orretly

spei�ed, i.e., Θ = {0, 1}, thus highlighting that the new issue present in dynami

environments is not due to misspei�ation. We will also assume that the agent

is patient, but not too patient, δ ∈ (0,
√

1/3), and that the return from the risky

investment in state sopt is high enough relative to the rate of impatiene, k > 2+4/δ.

This problem is simple enough that we an diretly haraterize the steady state

and then hek if it is a Berk-Nash equilibrium. Consider a (Bayesian) agent who

starts with a prior µ = Pr(θ = 1) ∈ (0, 1) in state sI . If she hooses ation O, then,

beginning next period (reall that all ations yield the same urrent payo� of 2/3 in

state sI), she will get

µW (sopt, 1) + (1− µ)W (s0, 0). (20)

Cruially, if ation O takes her to state sopt, then she learns that θ = 1, so that
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Figure 2: Example: Steady state is not a Berk-Nash equilibrium.

States are depited with irles and ations with squares. For eah state, blue lines indiate the

ations that an be taken in the state. Blak arrows indiate transition probabilities given eah

state-ation pair.

µ′ = 1. In this ase, it is optimal to take the safe ation and return to sI next

period, sine taking the risky ation would lead to a zero payo� with probability one

and a delay in getting bak to sI of one period. Therefore, W (sopt, 1) = −1/3 +

δW (sI , 1). Also, if she ends up in state s0, she gets 0 and then goes on to state

sI , i.e., W (s0, 0) = 0 + δW (sI , 0). Moreover, if the agent is in state sI and has

ertainty about the state, i.e., µ′ = 0 or 1, then it is optimal for her to hoose either

ation A or B, respetively, and her payo� alternates between 2/3 and 1 forever, i.e.,

W (sI , 1) = W (sI , 0) =: W ∗ = (2/3+ δ)/(1− δ2). Therefore, expression (20) beomes

− (1/3)µ+ δW ∗. (21)

Consider instead the ase where the agent hooses ation A in state sI . Then next

period she gets

(1− µ)W (s1, 0) + µW (s0, 1), (22)

where W (s1, 0) = 1 + δW (sI , 0) = 1 + δW ∗
and W (s0, 1) = 0 + δW (sI , 1) = δW ∗

.
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Thus, expression (22) beomes

(1− µ) + δW ∗. (23)

Similarly, if the agent hooses ation B then next period she will get

µ+ δW ∗. (24)

Finally, hoosing ation S in state sI keeps the agent in state sI and results in no

information about θ being revealed. If S is optimal at sI , then it is optimal to hoose

it in every period, in whih ase the agent earns a payo� of 2/3 in eah period and

her disounted payo� beginning next period is

2/3

1− δ
. (25)

Comparing (21) and (23), it follows that ation A is better than ation O for any

belief µ, implying that the agent will never pik O in state sI . Intuitively, the agent

realizes that, if she piks O and ends up in state sopt, then she will infer that the risky

alternative will deliver a zero payo� for sure, and so there is no point in piking O

to begin with. Also, by omparing (23), (24), and (25), it follows that if the agent

starts in state sI with a prior µ that satis�es

1/3

1− δ2
≤ µ ≤

2/3− δ2

1− δ2
,

then it is optimal for her to hoose S and stay at sI forever. (Suh a set of priors is

nonempty beause δ ∈ (0,
√

1/3)). Therefore, repeatedly hoosing S and staying at

sI is a steady-state outome. Note, however, that Theorem 2 does not apply to this

steady state beause (i) the SMDP is not subjetively stati, and (ii) identi�ation

does not hold, beause the agent learns nothing about θ by playing S at sI . Theorem 3

also does not apply here, beause in this steady-state outome only state sI is visited.

In fat, we will now show that this steady-state outome annot arise in a Berk-Nash

equilibrium, suggesting a limitation of equilibrium analysis in dynami settings.

To analyze Berk-Nash equilibria, let µ denote the agent's equilibrium belief and

onsider the agent's hoie in state sI . Let's �rst �nd the set of µ's suh that ation

S is preferred to both A and B, ignoring ation O. If the agent takes ation S, then,
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beginning next period (reall that all ations yield the same urrent payo�), she goes

bak to sI and obtains

W (sI , µ). (26)

Ation A, on the other hand, yields

µW (s0, µ) + (1− µ)W (s1, µ), (27)

where, importantly, the agent does not update her equilibrium belief upon moving to

state s0 or s1, as the de�nition of equilibrium requires optimization with respet to

a single, �xed equilibrium belief. As before, we have W (s0, µ) = 0 + δW (sI , µ) and

W (s1, µ) = 1 + δW (sI , µ). Therefore, expression (27) beomes

(1− µ) + δW (sI , µ). (28)

Similarly, ation B yields

µ+ δW (sI , µ). (29)

Finally, note that if S is optimal, then the agent stays always in sI and earns 2/3 in

every period; therefore, W (sI , µ) = (2/3)/(1 − δ). It then follows from (27), (28),

and (29) that S an be optimal only if 1/3 ≤ µ ≤ 2/3. We will show, however, that

under any suh µ, the agent prefers ation O to ation S. Therefore, S annot arise

as a Berk-Nash equilibrium outome. To establish this laim, let's assume that S is

optimal. A deviation to ation O would yield

µW (sopt, µ) + (1− µ)W (s0, µ), (30)

where W (sopt, µ) = −1/3 + δ(µW (s0, µ) + (1− µ)W (sk, µ)). Note that we have used

the fat that, in deviating to O, the agent would pik the risky alternative in state

sopt; otherwise, it ould never be optimal to hoose O. By also using the fat that

W (sj, µ) = j + δW (sI , µ), for j ∈ {0, k}, expression (30) beomes

− (1/3)µ+ δµ(1− µ)k + (µδ + (1− µ))δW (sI , µ). (31)

Using the fat that W (sI , µ) = (2/3)/(1−δ) if S is optimal, we an ompare W (sI , µ)

with (31) and use algebra to onlude that it is stritly lower (hene, the agent prefers
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to deviate from S to O) for all values of µ between 1/3 and 2/3 given the assumption

that k > 2 + 4/δ.11 �

5.2 Disussion

We onlude with additional remarks about the above results.

Guidane for using equilibrium onept : Theorems 2 and 3 suggest that the equi-

librium approah is valid in SMDPs that are not subjetively stati provided that

either identi�ation holds or that all states are visited with positive probability (the

latter is the ase, for example, if every state an be reahed from any other state ir-

respetive of the agent's ations). Alternatively, if either of these onditions fails, the

modeler an add small perturbations that either guarantee that identi�ation holds

(as we did, for example, in Setion 4.1) or small perturbations that guarantee that

all states an be reahed with positive probability. Of ourse, there are environments

where these perturbations are not justi�able, suh as in bandit problems where the

only way to learn about the onsequene of an ation is to take that ation. To

the extent to whih those environments are not subjetively stati, then our results

suggest that the equilibrium approah is of limited use in those ases.

Convergene: Theorems 2 and 3 do not imply that behavior will neessarily sta-

bilize in an SMDP. In fat, it is well known from the theory of Markov hains that,

even if no deisions a�et the relevant transitions, outomes need not stabilize with-

out further assumptions�this is also true, for example, in the related ontext of

learning to play Nash equilibrium in games.

12

Thus, the question of onvergene

remains open at this level of generality. Reently there has been progress takling

onvergene, but all in the ontext of stati environments where the only relevant

state variable is the agent's belief (Fudenberg, Romanyuk, and Strak [2017℄, Heid-

hues, K®szegi and Strak (2018a, 2018b)), Esponda, Pouzo, and Yamamoto [2019℄,

Frik, Iijima, and Ishii [2020℄, and Fudenberg, Lanzani, and Strak [2020℄).

11W (sI , µ) is less than expression (31) whenever 2/3 + µ((2/3)δ + 1/3) − δµ(1 − µ)k < 0. For

1/3 ≤ µ ≤ 2/3, the LHS of this last expression is largest when µ = 2/3, and replaing this value in

the expression we obtain k > 2 + 4/δ.
12

For example, in the game-theory literature, general global onvergene results have only

been obtained in speial lasses of games�e.g. zero-sum, potential, and supermodular games

(Hofbauer and Sandholm, 2002).
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Mixed strategies: Theorem 3 also suggests that we an interpret a mixed strategy

as the limit of the frequeny of ations. In partiular, even if the agent's ation may

not settle down, the frequeny of ations may; see Esponda, Pouzo, and Yamamoto

[2019℄ for a formalization of this idea. Alternatively, we an interpret a mixed strat-

egy following the approah of Fudenberg and Kreps [1993℄, who show that adding

small payo� perturbations a la Harsanyi [1973℄ an provide a learning foundation for

mixed-strategy Nash equilibria: Agents do not atually mix; instead, every period

their payo�s are subjet to small perturbations, and what we all the mixed strat-

egy is simply the probability distribution generated by playing pure strategies and

integrating over the payo� perturbations. We also followed this approah in the pa-

per that introdued Berk-Nash equilibrium in stati ontexts (Esponda and Pouzo,

2016). The same idea applies here at the expense of additional notational burden.

13
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A Appendix

A.1 Proof of Lemma 1

The proof of Lemma 1 relies on the following laim.

Claim A. (i) For any regular SMDP, there exists θ∗ ∈ Θ and K < ∞ suh

that, for all m ∈ ∆(S × X), KQ(m, θ∗) ≤ K. (ii) Fix any θ ∈ Θ and a sequene

(mn)n in ∆(S× X) suh that Qθ(s
′ | s, x) > 0 for all (s′, s, x) ∈ S× S× X suh that

Q(s′ | s, x) > 0 and limn→∞mn = m. Then limn→∞KQ(mn, θ) = KQ(m, θ). (iii) KQ

is (jointly) lower semiontinuous: Fix any (mn)n and (θn)n suh that limn→∞mn =

m and limn→∞ θn = θ. Then lim infn→∞KQ(mn, θn) ≥ KQ(m, θ). (iv) For all

m ∈ ∆(S×X), θ 7→ KQ(m, θ) is ontinuous at every θ ∈ Θ suh that KQ(m, θ) < ∞.

Proof of Claim A. The proof is very similar to the proof of Claim A in Esponda and Pouzo

[2016℄, so we only present a sketh. Part (i) follows from the third ondition in the

de�nition of regular SMDP. Part (ii) follows standard ontinuity arguments. For

part (iii), observe that KQ(mn, θn) =
∑

s,xEQ(·|s,x)

[

log Q(S′|s,x)
Qθn (S

′|s,x)

]

mn(s, x). It follows

that

∑

s,xEQ(·|s,x) [logQ(S ′|s, x)]mn(s, x) →
∑

s,xEQ(·|s,x) [logQ(S ′|s, x)]m(s, x), so

it remains to study lim infn→∞−
∑

s,xEQ(·|s,x) [logQθn(S
′|s, x)]mn(s, x). Suppose the

liminf is �nite (if not, the result holds trivially). As θ 7→ Qθ is ontinuous, then if

m(s, x) > 0 it follows thatEQ(·|s,x) [logQθn(S
′|s, x)]mn(s, x) → EQ(·|s,x) [logQθ(S

′|s, x)]m(s, x).

Ifm(s, x) = 0, it follows thatEQ(·|s,x) [logQθn(S
′|s, x)]mn(s, x) → 0 ≥−EQ(·|s,x) [logQθ(S

′|s, x)]m(s, x)

(by onvention 0 log 0 = 0). Thus the desired result holds.

Part (iv): Sine

∑

s,xEQ(·|s,x)

[

log Q(S′|s,x)
Qθ(S′|s,x)

]

m(s, x) < ∞, ontinuity follows from

ontinuity of θ 7→ log Q(s′|s,x)
Qθ(s′|s,x)

Q(s′|s, x)m(s, x) and the fat that S× X is �nite. �

Proof of Lemma 1. (i) By Jensen's inequality and strit onavity of ln(·),

KQ(m, θ) ≥ −
∑

(s,x)∈S×X
ln(EQ(·|s,x)[

Qθ(S
′|s,x)

Q(S′|s,x)
])m(s, x) = 0, with equality if and only

if Qθ(· | s, x) = Qθ(· | s, x) for all (s, x) suh that m(s, x) > 0.

(ii) ΘQ(m) is nonempty : By Claim A(i), there exists K < ∞ suh that the

minimizers are in the onstraint set {θ ∈ Θ : KQ(m, θ) ≤ K}. Beause KQ(m, ·) is

ontinuous over a ompat set, a minimum exists.

ΘQ(·) is uh and ompat valued: Fix any (mn)n and (θn)n suh that limn→∞mn =

m, limn→∞ θn = θ, and θn ∈ ΘQ(mn) for all n. We establish that θ ∈ ΘQ(m) (so

that ΘQ(·) has a losed graph and, by ompatness of Θ, it is uh). Suppose, in

order to obtain a ontradition, that θ /∈ ΘQ(m). Then, by Claim A(i), there exists

38



θ̂ ∈ Θ and ε > 0 suh that KQ(m, θ̂) ≤ KQ(m, θ) − 3ε and KQ(m, θ̂) < ∞. By

regularity, there exists (θ̂j)j with limj→∞ θ̂j = θ̂ and, for all j, Qθ̂j
(s′ | s, x) > 0 for

all (s′, s, x) ∈ S2 ×X suh that Q(s′ | s, x) > 0. We will show that there is an integer

J suh that θ̂J �does better� than θn given mn, whih is a ontradition. Beause

KQ(m, θ̂) < ∞, ontinuity of KQ(m, ·) implies that there exists J large enough suh

that

∣

∣

∣
KQ(m, θ̂J )−KQ(m, θ̂)

∣

∣

∣
≤ ε/2. Moreover, Claim A(ii) applied to θ = θ̂J implies

that there exists Nε,J suh that, for all n ≥ Nε,J ,

∣

∣

∣
KQ(mn, θ̂J)−KQ(m, θ̂J)

∣

∣

∣
≤ ε/2.

Thus, for all n ≥ Nε,J ,

∣

∣KQ(mn, θ̂J) − KQ(m, θ̂)
∣

∣ ≤
∣

∣KQ(mn, θ̂J) − KQ(m, θ̂J)
∣

∣ +
∣

∣KQ(m, θ̂J)−KQ(m, θ̂)
∣

∣ ≤ ε and, therefore,

KQ(mn, θ̂J) ≤ KQ(m, θ̂) + ε ≤ KQ(m, θ)− 2ε. (32)

Suppose KQ(m, θ) < ∞. By Claim A(iii), there exists nε ≥ Nε,J suh that

KQ(mnε
, θnε

) ≥ KQ(m, θ)−ε. This result, together with (32), implies thatKQ(mnε
, θ̂J) ≤

KQ(mnε
, θnε

) − ε. But this ontradits θnε
∈ ΘQ(mnε

). Finally, if KQ(m, θ) = ∞,

Claim A(iii) implies that there exists nε ≥ Nε,J suh that KQ(mnε
, θnε

) ≥ 2K, where

K is the bound de�ned in Claim A(i). But this also ontradits θnε
∈ ΘQ(mnε

).

Thus, ΘQ(·) has a losed graph, and so ΘQ(m) is a losed set. Compatness of

ΘQ(m) follows from ompatness of Θ. Therefore, ΘQ(·) is upper hemiontinuous

(see Aliprantis and Border [2006℄, Theorem 17.11). �

A.2 Proof of Theorem 1

Let W = ∆(S × X) × ∆(Θ) and endow it with the produt topology (given by the

Eulidean one for∆(S×X) and the weak topology for∆(Θ)). Clearly,W 6= {∅}. Sine

Θ is ompat, ∆(Θ) is ompat under the weak topology; Σ and ∆(S × X) are also

ompat. Thus, W is ompat under the produt topology. W is also onvex. Finally,

W ⊆ M× rca(Θ) where M is the spae of |S| × |X| real-valued matries and rca(Θ)

is the spae of regular Borel signed measures endowed with the weak topology. The

spae M× rca(Θ) is loally onvex with a family of seminorms {(m,µ) 7→ pf(m,µ) =

||m||+ |
�

Ω
f(x)µ(dx)| : f ∈ C(Ω)} (C(Ω) is the spae of real-valued ontinuous and

bounded funtions and ||.|| is understood as the spetral norm). Also, we observe

that (m,µ) = 0 i� pf(m,µ) = 0 for all f ∈ C(Ω), thus M× rca(Θ) is also Hausdor�.
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Let T : W → 2W be suh that T (m,µ) = M(m,µ)×∆(ΘQ(m)) where

(m,µ) 7→ M(m,µ) ≡ {m′ ∈ ∆(S× X) : m′ ∈ O(µ) and m′
S = Q[m]}

where for any µ ∈ ∆(Θ), O(µ) is the set of all m′ ∈ ∆(S×X) that satisfy optimality,

i.e., for all (s, x) ∈ S×X suh that m(s, x) > 0, x is optimal given s in the MDP(Q̄µ),

where Q̄µ =
�

Θ
Qθµ(dθ); and m 7→ Q[m](·) =

∑

(s,x)∈S×X
Q(· | s, x)m(s, x) ∈ ∆(S).

Hene, to show existene of an equilibrium, it is su�ient to show that T has a

�xed point. Sine W is a nonempty ompat onvex subset of a loally Hausdor�

spae, there exists a �xed point of T by the Kakutani-Fan-Gliksberg theorem (see

Aliprantis and Border [2006℄, Corollary 17.55), if T is nonempty, onvex valued, om-

pat valued, and upper hemiontinuous under the produt topology (and hene, it

has a losed graph (see Aliprantis and Border [2006℄, Theorem 17.11)).

Non-empty: We show that, for every (m,µ) ∈ W, M(m,µ) and ΘQ(m) are

non-empty, and thus, so is T (m,µ). Nonemptiness of ΘQ(m) follows from Lemma 1.

For nonemptiness of M(m,µ), note that, for eah s, the argmax of the MDP(Q̄µ) is

non-empty; in partiular, there exists m′
X|S suh that, for eah s, any ation in the

support of m′
X|S(· | s) is optimal. Then m′ = m′

X|SQ[m] ∈ ∆(S × X) is an element of

M(m,µ).

Convex-valued: It su�es to show that both for every (m,µ) ∈ W, ∆(ΘQ(m))

and M(m,µ) are onvex. Convexity of the former is obvious. To show onvexity

of M(m,µ) take any m1 and m2 in M(m,µ). For any λ ∈ [0, 1] it is lear that

λmS,1+(1−λ)mS,2 = Q[m]. Also, any (s, x) in the support of λm1+(1−λ)m2 has to

be in the support of either m1 or m2 and thus, x is optimal given s in the MDP(Q̄µ).

Therefore λm1 + (1− λ)m2 ∈ M(m,µ).

Compat-valued: For every (m,µ) ∈ W, ∆(ΘQ(m)) is ompat (under the weak

topology) beause ΘQ(m) is ompat (see Aliprantis and Border [2006℄, Theorem

15.11). The set ∆(S× X) is ompat, so to show ompatness of M(m,µ) it su�es

to show it is losed. Take any onvergent (to some m′
) sequene (m′

n)n in M(m,µ).

It is lear that m′ = Q[m]. Take any (s, x) in the support of m′
, it follows that for

su�iently large n, (s, x) are in the support of m′
n and so, x is optimal given s in the

MDP(Q̄µ). Thus, T is ompat-valued under the produt topology.

UHC: By Aliprantis and Border [2006℄, Theorem 17.28 to show upper hemionti-

nuity of T under the produt topology it su�es to show that both m 7→ ∆(ΘQ(m))
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and M are uh. The orrespondene ΘQ(·) is upper hemiontinuous; hene, the or-

respondene ∆(ΘQ(·)) is too (see Aliprantis and Border [2006℄, Theorem 17.13). To

show upper hemiontinuity of M, take a sequene (m′
n, mn, µn)n in Graph(M) that

onverges to (m′, m, µ). It is lear that m′
S
= Q[m] so we only need to show that O

is uh.

Claim: O is uh.

Proof: Take any sequene (m′
n, µn)n in Graph(O) that onverges to (m′, µ). Take

any (s, x) in the support of m′
. Then, for su�iently large n, (s, x) are in the support

of m′
n and, therefore, x is optimal given s in the MDP(Q̄µn

). By standard arguments

(s,Q) 7→ M(s,Q) ≡ argmaxx̂∈X
�

S
{π(s, x̂, s′) + δV (s′)}Q(ds′|s, x̂) is uh (sine S×X

are �nite, Q belongs to the spae of real-valued matries with its natural topology).

Sine θ 7→ Qθ is bounded and ontinuous, µ 7→ Q̄µ is ontinuous under the weak

topology. Thus (s, µ) 7→ M(s, Q̄µ) is uh. Sine x ∈ M(s, Q̄µn
) for all n, it follows

that x ∈ M(s, Q̄µ); therefore, x is optimal given s in the MDP(Q̄µ), as desired. �

A.3 Proof of Lemma 2

For the proof of Lemma 2, we rely on the following de�nitions and the laim below.

De�ne K∗
Q(m) ≡ infθ∈Θ KQ(m, θ) and let Θ̂ ⊆ Θ be a dense set suh that, for all

θ ∈ Θ̂, Qθ(s
′ | s, x) > 0 for all (s, x, s′) ∈ S × X × S suh that Q(s′ | s, x) > 0.

Existene of suh a set Θ̂ follows from the regularity assumption.

Claim B. Suppose limt→∞ ‖mt −m‖ = 0 a.s.-Pf
. Then: (i) For all θ ∈ Θ̂,

lim
t→∞

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
=

∑

(s,x)∈S×X

EQ(·|s,x)

[

log
Q(S ′|s, x)

Qθ(S ′|s, x)

]

m(s, x)

a.s.-Pf
. (ii)ForPf

-almost all h ∈ H and for any ǫ > 0 and α = (infΘ: dm(θ)≥ǫ KQ(m, θ)−

K∗
Q(m))/3, there exists T suh that, for all t ≥ T ,

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥ K∗

Q(m) +
3

2
α

for all θ ∈ {Θ: dm(θ) ≥ ǫ}, where dm(θ) = inf θ̃∈ΘQ(m) ||θ − θ̃||.

Proof of Claim B. (The proof is similar to the proof of Claim B in Esponda and Pouzo

[2016℄) We �rst show that for Pf
-almost all histories and any ǫ > 0, there exists a
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Mǫsuh that

∣

∣

∣

∣

∣

∣

t−1

t
∑

τ=1

logQ(sτ |sτ−1, xτ−1) =
∑

(s,x)∈S×X

EQ(·|s,x)

[

logQ(S ′|s, x)
]

m(s, x)

∣

∣

∣

∣

∣

∣

< ǫ

for all t ≥ Mǫ. To do this, for any τ ∈ {1, 2, ...} let lτ ≡ logQ(sτ |sτ−1, xτ−1) −

EQ(·|sτ−1,xτ−1)

[

logQ(S ′|sτ−1, xτ−1)
]

. Observe that for all z ∈ S2×X, EPf (·|ht) [lt+1] = 0

a.s.-Pf
, where Pf(·|ht) denotes the onditional probability indued by Pf

given the

partial history ht
. Moreover, suptEPf [l2t ] ≤ supt

∑t
τ=1 τ

−2E
[
∑

s′∈S(logQ(s′|S,X))2Q(s′ | S,X)
]

<

∞ beause x 7→ (log x)2x is bounded and

∑

τ τ
−2 < ∞. Thus, an appliation of the

MCT and Kroneker's lemma imply that

lim
t→∞

t−1
t

∑

τ=1

(

logQ(sτ |sτ−1, xτ−1)− EQ(·|sτ−1,xτ−1)

[

logQ(S ′|sτ−1, xτ−1)
])

= 0

a.s.-Pf
. Therefore, to establish the desired result it su�es to show that

lim
t→∞

t−1

t
∑

τ=1

EQ(·|sτ−1,xτ−1)

[

logQ(S ′|sτ−1, xτ−1)
]

−
∑

(s,x)∈S×X

EQ(·|s,x)

[

logQ(S ′|s, x)
]

m(s, x) = 0

(33)

a.s.-Pf
. Observe that

t−1
t

∑

τ=1

EQ(·|sτ−1,xτ−1)

[

logQ(S ′|sτ−1, xτ−1)
]

=
∑

s,x∈S×X

t−1
t

∑

τ=1

1(s,x)(sτ−1, xτ−1)EQ(·|s,x)

[

logQ(S ′|s, x)
]

=
∑

s,x∈S×X

mt(s, x)EQ(·|s,x)

[

logQ(S ′|s, x)
]

.

Equation (33) follows beause limt→∞ ‖mt −m‖ = 0 a.s.-Pf
andEQ(·|s,x)

[

logQ(S ′|s, x)
]

=
∑

s′∈S logQ(s′|s, x)Q(s′|s, x) is bounded for all (s, x) ∈ S×X. So, in order to establish

parts (i) and (ii) it only remains to ontrol the expression

− lim
t→∞

t−1

t
∑

τ=1

(

logQθ(sτ |sτ−1, xτ−1)− EQ(·|sτ−1,xτ−1)

[

logQθ(S
′|sτ−1, xτ−1)

])
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Part (i). Pointwise over Θ̂,

lim
t→∞

t−1

t
∑

τ=1

(

logQθ(sτ |sτ−1, xτ−1)− EQ(·|sτ−1,xτ−1)

[

logQθ(S
′|sτ−1, xτ−1)

])

= 0

a.s.-Pf
by essentially the same arguments used in the �rst part of the proof.

Part (ii). For any ξ > 0 let Θξ ⊆ Θ suh that θ ∈ Θξ i� Qθ(s
′|s, x) ≥ ξ for all

(s′, s, x) suh that Pm(s
′, s, x) > 0. Also, observe that

lim
t→∞

t−1
t

∑

τ=1

logQθ(sτ |sτ−1, xτ−1) =
∑

s′,s,x∈S2×X

freqt(s
′, s, x) logQθ(s

′|s, x)

where z 7→ freqt(z) ≡ t−1
∑t

τ=1 1z(sτ , sτ−1, xτ−1). Let (s′, s, x) 7→ Pm(s
′, s, x) ≡

Q(s′|s, x)m(s, x). By essentially the same argument used in the �rst part of the

proof, it follows that for any ζ > 0 and Pf
-almost any h, there exists a Tζ suh that

maxz∈S2×X |freqt(z)− Pm(z)| < ζ for all t ≥ Tζ .

Hene, for any θ ∈ {Θ \Θξ} ∩ {Θ: dm(θ) ≥ ǫ}

∑

(s′,s,x)∈S2×X

freqt(s
′, s, x) logQθ(s

′|s, x) ≤
∑

(s′,s,x) : Pm(s′,s,x)>0

(Pm(s
′, s, x)− ζ) logQθ(s

′|s, x)

≤
∑

s,x∈S×X

EQ(·|s,x) [logQθ(s
′|s, x)]m(s, x)

− ζ
∑

(s′,s,x) : Pm(s′,s,x)>0

logQθ(s
′|s, x)

for all t ≥ Tζ. Therefore,

t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥KQ(m, θ) + ζ

∑

(s′,s,x) : Pm(s′,s,x)>0

logQθ(s
′|s, x)

for any t ≥ max{Tζ ,Mα}. By de�nition of {Θ: dm(θ) ≥ ǫ} it follows that

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥K∗

Q(m) + 2α + ζ
∑

(s′,s,x) : Pm(s′,s,x)>0

logQθ(s
′|s, x)

for any t ≥ Tζ . Sine θ ∈ {Θ \Θξ}∩{Θ: dm(θ) ≥ ǫ}, let zθ = (s′θ, sθ, xθ) be suh that

Qθ(s
′
θ|sθ, xθ) < ξ and Pm(zθ) > 0 and note that ζ

∑

(s′,s,x) : Pm(s′,s,x)>0 logQθ(s
′|s, x) ≤
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ζ log ξpL where pL ≡ min{Pm(z) : Pn(z) > 0}. This implies that there exists a ζ∗ suh

that ζ∗ log ξpL ≤ −0.5α and so

t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥K∗

Q(m) +
3

2
α

for any t ≥ max{Tζ∗ ,Mα}.

For any θ ∈ Θξ∩{Θ: dm(θ) ≥ ǫ}, it follows that
∑

(s′,s,x)∈S2×X
freqt(s

′, s, x) logQθ(s
′|s, x) ≤

ln ξ,

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥ − ln ξ +

∑

(s,x)∈S×X

EQ(·|s,x)

[

logQ(S ′|s, x)
]

m(s, x)− 1

for any t ≥ M1. Sine
∑

(s,x)∈S×X
EQ(·|s,x)

[

logQ(S ′|s, x)
]

m(s, x) is �nite we an hoose

ξ suh that the RHS is larger or equal than K∗
Q(m) + 3

2
α.

We thus showed that for Pf
-almost all h ∈ H and for any ǫ > 0, there exists T

suh that, for all t ≥ T ,

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥ K∗

Q(m) +
3

2
α

for all θ ∈ {Θ: dm(θ) ≥ ǫ}, as desired. �

Proof of Lemma 2. It su�es to show that limt→∞

�

Θ
dm(θ)µt(dθ) = 0 a.s.-Pf

over H. For any η > 0 let Θη(m) = {θ ∈ Θ : dm(θ) < η}, and Θ̂η(m) = Θ̂ ∩ Θη(m)

(the set Θ̂ is de�ned in ondition 3 of De�nition 5, i.e., regularity). We now show

that µ0(Θ̂η(m)) > 0. By Lemma 1, ΘQ(m) is nonempty. By denseness of Θ̂, Θ̂η(m)

is nonempty. Nonemptiness and ontinuity of θ 7→ Qθ, imply that there exists a

non-empty open set U ⊆ Θ̂η(m). By full support, µ0(Θ̂η(m)) > 0. Also, observe

that for any ǫ > 0, {Θ: dm(θ) ≥ ǫ} is ompat. This follows from ompatness of

Θ and ontinuity of θ 7→ dm(θ) (whih follows by Lemma 1 and an appliation of

the Theorem of the Maximum). Compatness of {Θ: dm(θ) ≥ ǫ} and lower semi-

ontinuity of θ 7→ KQ(m, θ) (see Claim A(iii)) imply that infΘ: dm(θ)≥ǫ KQ(m, θ) =

minΘ: dm(θ)≥ǫ KQ(m, θ) > K∗
Q(m). Let α ≡ (minΘ: dm(θ)≥ǫ KQ(m, θ)−K∗

Q(m))/3 > 0.

Also, let η > 0 be hosen suh that KQ(m, θ) ≤ K∗
Q(m) + 0.25α for all θ ∈ Θη(m)

(suh η always exists by ontinuity of θ 7→ KQ(m, θ)).
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Let H1 be the subset of H for whih the statements in Claim B hold; note that

Pf (H \H1) = 0. Heneforth, �x h ∈ H1; we omit h from the notation to ease the

notational burden. By simple algebra and the fat that dm is bounded in Θ, it follows

that, for all ǫ > 0 and some �nite C > 0,

�

Θ

dm(θ)µt(dθ) =

�

Θ
dm(θ)Qθ(st | st−1, xt−1)µt−1(dθ)
�

Θ
Qθ(st | st−1, xt−1)µt−1(dθ)

=

�

Θ
dm(θ)Zt(θ)µ0(dθ)
�

Θ
Zt(θ)µ0(dθ)

≤ ǫ+ C

�

{Θ: dm(θ)≥ǫ}
Zt(θ)µ0(dθ)

�

Θ̂η(m)
Zt(θ)µ0(dθ)

≡ ǫ+ C
At(ǫ)

Bt(η)
.

where

Zt(θ) ≡
t

∏

τ=1

Qθ(sτ |sτ−1, xτ−1)

Q(sτ |sτ−1, xτ−1)
= exp

{

−
t

∑

τ=1

log

(

Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)

}

.

Hene, it su�es to show that

lim sup
t→∞

{exp {t (K∗(m) + 0.5α)}At(ǫ)} = 0 (34)

and

lim inf
t→∞

{

exp
{

t
(

K∗
Q(m) + 0.5α

)}

Bt(η)
}

= ∞. (35)

Regarding equation (34), we �rst show that

lim
t→∞

sup
{Θ: dm(θ)≥ǫ}

{

(

K∗
Q(m) + 0.5α

)

− t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

}

≤ const < 0.

To show this, note that, by Claim B(ii) there exists a T , suh that for all t ≥ T ,

t−1
∑t

τ=1 log(Q(sτ |sτ−1, xτ−1)/Qθ(sτ |sτ−1, xτ−1)) ≥ K∗
Q(m)+3

2
α, for all θ ∈ {Θ: dm(θ) ≥

ǫ}. Thus,

lim
t→∞

sup
{Θ: dm(θ)≥ǫ}

{

K∗
Q(m) +

α

2
− t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

}

≤ −α.
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Therefore,

lim sup
t→∞

{

exp
{

t
(

K∗
Q(m) + 0.5α

)}

At(ǫ)
}

≤ lim sup
t→∞

sup
{Θ: dm(θ)≥ǫ}

exp
{

t
(

(

K∗
Q(m) + 0.5α

)

− t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)}

= 0.

Regarding equation (35), by Fatou's lemma and some algebra it su�es to show

that

lim inf
t→∞

exp
{

t
(

K∗
Q(m) + 0.5α

)}

Zt(θ) = ∞ > 0

(pointwise on θ ∈ Θ̂η(m)), or, equivalently,

lim inf
t→∞

(

K∗
Q(m) + 0.5α− t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)

> 0.

By Claim B(i),

lim inf
t→∞

(

K∗
Q(m) + 0.5α− t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)

= K∗
Q(m) + 0.5α−KQ(m, θ)

(pointwise on θ ∈ Θ̂η(m)). By our hoie of η, the RHS is greater than 0.25α and our

desired result follows. �

A.4 Proof of Theorem 2.

Let H be the set of histories suh that (mt)t onverges to m. By hypothesis, Pf(H) >

0. By Lemma 2, there exists a set H′
with Pf(H′) = Pf(H) > 0 suh that every

history in H′
satis�es the result stated in Lemma 2. Throughout, we �x a history

h ∈ H′
. Heneforth, we omit the history from the notation.

Also, let (µ, s) 7→ M(s, µ) ≡ argmaxx∈X
�

S
{π(s, x, s′) + δW (s′, B(s, x, s′, µ))} Q̄µ(ds

′|s, x),

whih by standard arguments is uh.

We will �rst establish onditions (i) and (ii) in the de�nition of Berk-Nash equi-

librium. Let (s, x) be suh that m(s, x) > 0. Sine (mt)t onverges to m, (s, x) ours

in�nitely often along the history, so we an �nd a subsequene along whih (s, x)
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ours along the entire subsequene: (st(j), xt(j)) = (s, x) for all j. By ompatness of

∆(Θ), we an take a further subsequene suh that µs,x = limk→∞ µt(j(k)) exists. By

our hoie of history (see beginning of proof) and Lemma 2, µs,x ∈ ∆(ΘQ(m)). Also,

sine x ∈ M(s, µt(j(k))) for all k and limk→∞ µt(j(k)) = µs,x, uh of M(s, ·) implies that

x ∈ M(s, µs,x). Thus, we have shown that, for any (s, x) suh that m(s, x) > 0, there

exists µs,x ∈ ∆(ΘQ(m)) suh that

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δW (s′, B(s, x̂, s′, µs,x))} Q̄µs,x
(ds′|s, x̂). (36)

We will now onsider eah ase in Theorem 2 separately. Consider �rst the ase

where identi�ation holds. Identi�ation implies that there exists Q∗
m suh that, for

all µ ∈ ∆(ΘQ(m)), Q̄µ = Q∗
m. Note also that the posterior given µ ∈ ∆(ΘQ(m))

must also be in ∆(ΘQ(m)), and so expression (36) implies that x is optimal in the

MDP(Q∗
m). Thus, piking any µ ∈ ∆(ΘQ(m)), we have shown that, for all (s, x) in

the support of m(s, x), ondition (i) is satis�ed. Beause µ ∈ ∆(ΘQ(m)), ondition

(ii) is also satis�ed.

Consider next the ase where the SMDP is subjetively stati. In this ase, the

payo� funtion, the value funtion, the Bayesian operator, and the subjetive transi-

tion probability funtion do not depend on s, and so, in a slight abuse of notation,

we drop s from subsequent expressions. For any x′ ∈ X,

�

S

{π(x, s′) + δW (B(x, s′, µs,x))} Q̄µs,x
(ds′|x) =

�

S

π(x, s′)Q̄µs,x
(ds′|x) + δW (µs,x)

≥

�

S

{π(x′, s′) + δW (B(x′, s′, µs,x))} Q̄µs,x
(ds′|x′)

≥

�

S

π(x′, s′)Q̄µs,x
(ds′|x′) + δW (µs,x),

where the �rst line follows from weak identi�ation (sine (s, x) is in the support

of m, weak identi�ation implies B(x, s′, µs,x) = µs,x for all s′ in the support of

Q̄µs,x
(ds′|x)), the seond line follows from (36), and the third line follows from the on-

vexity of the value funtion µ 7→ W (µ) (whih we prove at the end of this proof) and

the martingale property of Bayesian updating (whih imply, using Jensen's inequal-

ity,

�

S
W (B(x′, s′, µs,x)Q̄µs,x

(ds′|x′) ≥ W (
�

S
B(x′, s′, µs,x)Q̄µs,x

(ds′|x′)) = W (µs,x).)
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Therefore,

x ∈ argmax
x̂∈X

�

S

π(x̂, s′)Q̄µs,x
(ds′|x̂). (37)

Thus, for the subjetively stati SMDP, we have shown that, for any (s, x) in the

support of m, there exists a belief µs,x ∈ ∆(ΘQ(m)) suh that (37) is satis�ed (whih,

for this speial ase, means that x is optimal given s in the MDP(Q̄µs,x
)).

It remains to establish that we an pik µs,x to be the same for all (s, x) in the

support of m. We will use the assumption of weak identi�ation to establish this

laim. Let (s∗, x∗) be any other element in the support of m. By repeating the

argument above, there exists µs∗,x∗ ∈ ∆(ΘQ(m)) suh that

x∗ ∈ argmax
x̂∈X

�

S

π(x̂, s′)Q̄µs∗,x∗
(ds′|x̂). (38)

By weak identi�ation and the fat that both µs,x and µs∗,x∗
belong to ∆(ΘQ(m)),

then Q̄µs∗,x∗
(·|s̃, x̃) = Q̄µs,x

(·|s̃, x̃) for all (s̃, x̃) in the support of m. Therefore, for any

x′ ∈ X,

�

S

π(x∗, s′)Q̄µs,x
(ds′|x∗) =

�

S

π(x∗, s′)Q̄µs∗,x∗
(ds′|x∗)

≥

�

S

π(x, s′)Q̄µs∗,x∗
(ds′|x)

=

�

S

π(x, s′)Q̄µs,x
(ds′|x)

≥

�

S

π(x′, s′)Q̄µs,x
(ds′|x′),

where the two equalities follow from the impliation of weak identi�ation mentioned

above and the two inequalities follow from (38) and (37), respetively. Thus, we an

use the same belief µs,x to support any state-ation pair (s∗, x∗) in the support of m.

We onlude by showing ondition (iii) in the de�nition of Berk-Nash equilibrium.

Let m 7→ Q[m](s′) ≡
∑

(s,x)∈S×X
Q(s′ | s, x)m(s, x) for any s′ ∈ S. We want to show

that mS = Q[m]. By the triangle inequality,

||mS−Q[m]|| ≤ ||mS(·)−
∑

x∈X

mt+1(·, x)||+||
∑

x∈X

mt+1(·, x)−Q[mt]||+||Q[mt]−Q[m]||.

As (mt)t onverges to m, the �rst and the third terms in the RHS vanish. We now
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show that the seond term also vanishes and thus onlude the veri�ation of ondition

(iii). Observe that for any s′ ∈ S,

∑

x∈X

mt+1(s
′, x)−Q[mt](s

′) = (t + 1)−1
t+1
∑

τ=1

1s′(sτ )− t−1
t

∑

τ=1

Q(s′ | sτ , xτ )

= t−1

t
∑

τ=1

{1s′(sτ+1)−Q(s′ | st, xt)}+
1s′(s1) + t−1

∑t
τ 1s′(sτ+1)

t+ 1
.

The seond summand of the RHS vanishes as t → ∞. Regarding the �rst one, ob-

serve that for any t ∈ N EPf [1s(st+1) | h
t] = Q(s′ | st, xt), where EPf [· | ht] is the on-

ditional expetation under Pf
given history ht

. Let ζt ≡
∑t

τ=1 τ
−1{1s′(sτ+1)−Q(s′ |

st, xt)} and note that suptEPf [ζ2t ] ≤ 2 supt

∑t
τ=1 τ

−2 < ∞. Thus, by the Mar-

tingale onvergene theorem , the proess (ζt)
∞
t=1 onverges Pf

-a.s. to ζ . Kro-

neker's Lemma implies that limt→∞ t−1
∑t

τ=1{1s′(sτ+1) − Q(s′ | st, xt)} = 0 Pf
-

a.s. Without loss of generality, we assume the history h satis�es this limit and thus

limt→∞ ||
∑

x∈Xmt+1(·, x)−Q[mt]|| = 0.

Proof that µ 7→ W (µ) is onvex: The value funtion is unique so it su�es to

show that the Bellman operator maps onvex funtions into themselves. To do this,

let µ1 and µ2 be in ∆(Θ), for any λ ∈ (0, 1), µλ ≡ λµ1 + (1− λ)µ2 and µ 7→ G(µ) be

onvex. De�ne

B[G](µλ) ≡ max
x∈X

�

{π(x, s′) + δG(B(x, s′, µλ))}Q̄µλ
(ds′ | x).

Note that

(x, s′) 7→ B(x, s′, µλ) = λ

�

Qθ(s
′ | x)µ1(dθ)

�

Qθ(s′ | x)µλ(dθ)
B(x, s′, µ1)+(1−λ)

�

Qθ(s
′ | x)µ2(dθ)

�

Qθ(s′ | x)µλ(dθ)
B(x, s′, µ2).

By onvexity of G,

�

G(B(x, s′, µλ))Q̄µλ
(ds′ | x) ≤ λ

�

G(B(x, s′, µ1))Q̄µ1
(ds′ | x)+(1−λ)

�

G(B(x, s′, µ2))Q̄µ2
(ds′ | x).
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Therefore

B[G](µλ) ≤max
x∈X

λ

�

{π(x, s′) + δ

�

G(B(x, s′, µ1))}Q̄µ1
(ds′ | x)+

+ (1− λ)

�

{π(x, s′) + δ

�

G(B(x, s′, µ2))}Q̄µ2
(ds′ | x)

≤λB[G](µ1) + (1− λ)B[G](µ2)

as desired.

A.5 Proof of Theorem 3.

Consider the set H′
introdued at the beginning of the proof of Theorem 2, and reall

that Pf(H′) > 0. Observe that for any history and any t ∈ {0, 1, ...}, Pf(s′, x′ | ht) =

σt(h)(x
′|s′)Q(s′|st, xt). Thus, by the MCT, there exists a set M of histories suh that

for eah h ∈ M

lim
t
||mt(h)− t−1

t
∑

τ=1

σt(h)(·|·)Q(·|st, xt)|| = 0

and Pf(M) = 1. Throughout, we �x a history h ∈ H′ ∩M, and note that Pf(H′ ∩

M) > 0. Heneforth, we omit the history from the notation. Also, de�ne M(s, µ) as

in the proof of Theorem 2.

We already proved ondition (iii) of the de�nition of Berk-Nash equilibrium when

we proved Theorem 2, so here we prove onditions (i) and (ii).

We �rst show σ(·|·) = m(·|·). To do this, observe that t−1
∑t

τ=1Q(·|st, xt) =
∑

s,xQ(·|s, x)mt(s, x) and so

lim
t→∞

||t−1
t

∑

τ=1

σt(h)(·|·)Q(·|st, xt)− σ(·|·)
∑

s,x

Q(·|s, x)m(s, x)|| = 0.

By our hoie of history, this implies that m(s′, x′) = σ(x′|s′)
∑

s,xQ(s′|s, x)m(s, x)

for any (s′, x′) ∈ ∆(S×X). By ondition (iii), it follows that m(s′, x′) = σ(x′|s′)m(s′),

whih implies that m(.|.) = σ(.|.), as desired.

Next, note that, by ompatness of ∆(Θ), we an �nd a subsequene of beliefs

(µt(k))k that onverges to some µ∗
. By our hoie of history (see beginning of proof)

and Lemma 2, µ∗ ∈ ∆(ΘQ(m)). Next, onsider any (s, x) suh that m(s, x) > 0,
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whih readily implies that σ(x | s) > 0. By onvergene of σt(k) to σ, σt(k)(x | s) =

f(x | s, µt(k)) > 0 for all su�iently large k. By optimality of f it follows that

x ∈ M(s, µt(k)) for all su�iently large k. By uh of M and onvergene of µt(k) to

µ∗
, it follows that x ∈ M(s, µ∗). Thus, it follows that there exists µ∗ ∈ ∆(ΘQ(m))

suh that, for any (s, x) in the support of m,

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δW (s′, B(s, x̂, s′, µ∗))} Q̄µ∗(ds′|s, x̂). (39)

We onlude by establishing that x is optimal given s in the MDP where the belief

is �xed at µ∗
. That is,

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x̂)

where s 7→ Vµ∗(s) = maxx̂∈X
�

{π(s, x̂, s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x̂).

Sine m(s) > 0 for all s, it follows that for any s and for any x suh that m(x |

s) = σ(x | s) > 0,

W (s, µ∗) =

�

S

{π(s, x, s′) + δW (s′, B(s, x, s′, µ∗))} Q̄µ∗(ds′|s, x)

=

�

S

{π(s, x, s′) + δW (s′, µ∗)} Q̄µ∗(ds′|s, x) (40)

where the seond line follows from µ∗ ∈ ∆(ΘQ(m)) and weak identi�ation. Therefore,

by the uniqueness of the value funtion, s 7→ W (s, µ∗) = Vµ∗(s).

Hene, it su�es to show that for any x̂ ∈ X,

�

S

{π(s, x, s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x) ≥

�

S

{π(s, x̂, s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x̂).

For this, let s 7→ x(s) be suh that σ(x(s)|s) > 0 for all s ∈ S. Observe that

�

S

{π(s, x(s), s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x(s)) ≥

�

S

{π(s, x̂, s′) + δW (s′, B(s, x̂, s′, µ∗))} Q̄µ∗(ds′|s, x̂).

51



By weak identi�ation and the fat that (s′, x(s′)) ∈ supp(m), it follows that

W (s′, B(s, x̂, s′, µ∗)) ≥

�

S

{π(s′, x(s′), s′′) + δW (s′′, B(s, x̂, s′, µ∗))} Q̄B(s,x̂,s′,µ∗)(ds
′′|s′, x(s′))

=

�

S

{π(s′, x(s′), s′′) + δW (s′′, B(s, x̂, s′, µ∗))} Q̄µ∗(ds′′|s′, x(s′))

where the seond line follows beause B(s, x̂, s′, µ∗) ∈ ∆(ΘQ(m)) and under weak

identi�ation this implies that s 7→ Q̄B(s,x̂,s′,µ∗)(·|s, x(s)) = Q̄µ∗(·|s, x(s)) for any

(s, x(s)) ∈ supp(m). By applying this inequality over and over to W (·, B(s, x̂, s′, µ∗)),

it follows that

W (s′, B(s, x̂, s′, µ∗)) ≥
∞
∑

j=0

δjQ̄j
µ∗

[
�

π(·, x(·), s′′)Q̄µ∗(ds′′|·, x(·))

]

(s′)

where g 7→ Q̄µ∗ [g](s) ≡
�

g(s′)Q̄µ∗(ds′|s, x(s)) for any s ∈ S. By uniqueness of the

value funtion, the RHS equals Vµ∗(s′) and thus

W (s′, B(s, x̂, s′, µ∗)) ≥ Vµ∗(s′)

for any s′ ∈ S, thereby implying the desired result.
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