
Google Charts for Institutional Research Websites
Jorge Martinez, University of Houston
February 11, 2018

Introduction

Welcome to the 2018 TAIR Conference Workshop Google Charts for
Institutional Research Websites. In this workshop, we will learn how
to use Google Visualization API to construct sleek and interactive
graphics for your websites. We will learn how to transform traditional
tables of institutional data into easily consumable graphics.

Figure 1: Self-Description by xkcd
(xkcd.com).

What is Google Charts API?

Google APIs, or Application Programming Interfaces, allow developers
to integrate Google services with other services. These services include
Google search features, translations, YouTube, calendars, and maps
on websites. Developers can also use Google APIs to enhance smart
phone apps, such as retrieving geocoordinates or calculating drive
times for delivery or navigation services. In this workshop we will use
Google Charts API.

Google Charts “allows you to create charts and reporting appli-
cations over structured data and helps integrate these directly into
your website,” (Google Charts, FAQ). The data lives inside the HTML
(webpage) file that is downloaded by the user when they go to your
site. This means all of the data that goes into each visualization is
processed locally - there is no data transferred to Google. The only
data that is transferred between the HTML file and Google are the
data and chart configurations. These are sent through a formatted
URL that specifies what kind of chart you are making and the op-
tions you want to apply to the data in the HTML file. They tell your
browser how to draw the chart on your page. Charts are rendered us-
ing HTML5/SVG and can be viewed on web browsers, smart phones,
or tablets. Jorge Martinez, Senior Research

Analyst, jxm@uh.edu
In order to communicate with the Google API and to create your

charts, you will need to use JavaScript. JavaScript is one of the three
programming language of the web. They are:

https://developers.google.com/chart/interactive/faq
mailto:jxm@uh.edu

google charts for institutional research websites 2

1. HTML defines the contents of a page, like text, links, and images.
2. CSS specifies the layout of the page, such as styles and how HTML

elements will be displayed.
3. JavaScript programs the behavior of web pages, such as what

happens when a user scrolls over a bar graph or what happens
when a user clicks on an element on the web page.

In this workshop, we will touch on select elements of these lan-
guages that will help us construct our charts. You do not need a back-
ground in these languages beyond what will be presented. We will rely
on the R Statistical Programming Package to help us get beyond this
knowledge gap and have it write the HTML, CSS, and JavaScript for
us.1 1 For more information about R and

the programs used in this workshop,
please refer to your pre-workshop
handout for download instructions.Your Tool Belt

We will use R to construct all of our charts, chart options, and page
layout. R is a programming language primarily used for statistical
computing and graphics.2 It is an open-sourced program that is pop- 2 See What is R?
ularly used in academia, but has been growing significantly in private
and public industries.3 If you know other programming languages 3 See “The Popularity of Data Anal-

ysis Software”, “SAS, R, or Python
Survey 2016”, and “Data Analyst
Captivated by R’s Power”

such as SAS, SPSS, STATA, Python, etc, you will pick-up R relatively
quickly. If you don’t have any programming experience, don’t worry -
we will make this as easy as possible.

After constructing our charts, we will use Brackets to help us
finely tune our webpages. Brackets is an open-sourced program cre-
ated by Adobe used to edit the languages of the web: HTML, CSS,
and JavaScript. We will use this tool towards the end of the workshop
to create the layout for our page and to see what our charts will look
like on the web.

Why Visualize a Data Dashboard?

Websites are important tools for establishing good first impressions.
Parents and students will navigate to university websites to help them
determine the academic quality of that institution. Among the top 23
reasons for choosing a college, students ranked “information from a
website” as number 11 among the factors they said were “very impor-
tant” in influencing their final college selection.4 Naturally, academic 4 Freshmen Students Say Rankings

Aren’t Key Factor in College Choice,
US News 2013.

reputation, job placement, financial aid, cost of attendance, visiting
campus, student life, size, graduate programs, graduation rates, and
geographic location superseded website information in the decision-
making processes. Interestingly, the website was decidedly more im-
portant than national rankings and parental influences, which makes
website content all the more important.

https://www.r-project.org/about.html
http://r4stats.com/articles/popularity/
http://r4stats.com/articles/popularity/
http://www.burtchworks.com/2016/07/13/sas-r-python-survey-2016-tool-analytics-pros-prefer/
http://www.burtchworks.com/2016/07/13/sas-r-python-survey-2016-tool-analytics-pros-prefer/
http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?pagewanted=all&_r=0
http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?pagewanted=all&_r=0
http://www.usnews.com/education/blogs/college-rankings-blog/2013/01/31/freshmen-students-say-rankings-arent-key-factor-in-college-choice
http://www.usnews.com/education/blogs/college-rankings-blog/2013/01/31/freshmen-students-say-rankings-arent-key-factor-in-college-choice
http://www.usnews.com/education/blogs/college-rankings-blog/2013/01/31/freshmen-students-say-rankings-arent-key-factor-in-college-choice

google charts for institutional research websites 3

Although not all parents and students are likely to seek-out IR
homepages to make their decisions, we do know that university lead-
ership, community members, and other stakeholders visit our sites
for more granular detail. Traditionally, we have used tabular data
in our Facts-At-A-Glance and Statistical Handbook to provide de-
tailed information about our students, faculty, and academics.5 Other 5 Click for Facts at a Glance and

Statistical Handbook.universities have adopted expensive licenses to utilize Tableau and
SAS Visual Analytics to create interactive data dashboards for their
institutional metrics.6 Although these are good tools for data visual- 6 See Texas A&M Accountability,

University of Texas Institutional Re-
porting, Research and Information
Systems for examples using Tableau,
and the University of North Carolina
or the University of Texas System
seekUT Dashboard for SAS VA exam-
ples.

ization, they can be inaccessible for some IR offices. With a little bit
of programming, we can overcome this obstacle and construct nice-
looking dashboards with open-sourced platforms.

Prepare Your Data

Google Charts requires specific data structures for specific charts. All
charts are constructed using a DataTable. A DataTable is a two-
dimensional table composed of rows and columns. Each column is
a specific data type (string, number) with a label (ethnicity, count).
DataTable requirements vary by chart type. The simplest DataTable
has at least two columns, one for the data label and one for the value.
These are used in line, bar, and pie charts. Let’s start with a simple
dataTables (Table 1). The first data type is string (Ethnicity). The
other three columns are numeric data types (Male, Female, Total). We
will discuss more complicated dataTables as we encounter them later
in the workshop (see Data Tree example on pg.16)

Table 1: Example DataTables: Enrollment by Race/Ethnicity
and Gender, Fall 2017.

Ethnicity Male Female Total

African American 1896 2505 4401
Asian American 4770 4570 9340
Hawaiian/P.I. 51 24 75
Hispanic 6550 7323 13873
International 2218 1647 3865
Multiracial 685 663 1348
Native American 34 37 71
Unknown 362 400 762
White 6190 5439 11629

http://www.uh.edu/ir/reports/facts-at-a-glance/
http://www.uh.edu/ir/reports/statistical-handbook/
http://www.uh.edu/ir/reports/facts-at-a-glance/
http://www.uh.edu/ir/reports/statistical-handbook/
https://accountability.tamu.edu/Student-Metrics
http://reports.utexas.edu/
http://reports.utexas.edu/
http://reports.utexas.edu/
http://eqdashboard.northcarolina.edu/
http://www.utsystem.edu/seekut/
http://www.utsystem.edu/seekut/

google charts for institutional research websites 4

Chart Anatomy

Each chart uses JavaScript embedded in the HTML file. That JavaScript
tells your browser what to do with the data and how to draw the
chart. Here is a complete example of code for a pie chart:

<html>
<head>

<!--Load the AJAX API-->
<script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
<script type="text/javascript">

// Load the Visualization API and the corechart package.
google.charts.load('current', {'packages':['corechart']});

// Set a callback to run when the Google Visualization API is loaded.
google.charts.setOnLoadCallback(drawChart);

// Callback that creates and populates a data table,
// instantiates the pie chart, passes in the data and
// draws it.
function drawChart() {

// Create the data table.
var data = new google.visualization.DataTable();
data.addColumn('string', 'Topping');
data.addColumn('number', 'Slices');
data.addRows([

['Mushrooms', 3],
['Onions', 1],
['Olives', 1],
['Zucchini', 1],
['Pepperoni', 2]

]);

// Set chart options
var options = {'title':'How Much Pizza I Ate Last Night',

'width':400,
'height':300};

// Instantiate and draw our chart, passing in some options.
var chart = new google.visualization.PieChart(document.getElementById('chart_div'));
chart.draw(data, options);

}
</script>

google charts for institutional research websites 5

</head>

<body>
<!--Div that will hold the pie chart-->
<div id="chart_div"></div>

</body>
</html>

The resulting chart would look like this:

Figure 2: How much pizza I ate last
night, an example. Source: Google.

You could copy and paste this entire code as a .html file on your
computer and see it using your web browser. The first line identi-
fies the file as HTML. The <head> is the element that contains all of
the HTML metadata, or data about data. This is placed before the
<body>, or the container that holds the web content. The metadata
defines various things such as titles, styles, links, scripts, etc. In our
case, our chart JavaScript code will live in the <head>.

The first part of the JavaScript in the <head> loads the loader. You
only need to define this once no matter how many charts you pro-
duce in this one HTML file. The part describing google.charts.load
loads the packages necessary for the charts you will construct. Current
specifies that you want the current chart configurations, and corechart
gives the configurations for most charts, including bar, column, line,
area, stepped area, bubble, pie, donut, combo, candlestick, histogram,
and scatter. We will load different chart types later. The callback
pulls the chart configurations after they are loaded and used when the
object of the callback is defined as it is in the next part, the function.

Inside function drawChart() you will have all the DataTable ele-

google charts for institutional research websites 6

ments along with the data you want to visualize followed by the chart
options which include color, chart titles, dimensions, etc. Finally, after
the data and options are set, you call the specific chart you are creat-
ing (PieChart) and draw the chart. The chart is drawn but it does not
appear until you call it in the body. We will place the drawn charts
in device containers using HTML. Device containers are essentially
placeholders for the object being called, in this case the pie chart that
was previously drawn in the JavaScript.

So far, all of this seems a little complicated and esoteric if you do
not know JavaScript. Fortunately, we have R to help us write the
JavaScript in a program that can be reproduced each time you want
to update your web charts.

Constructing Your Charts in R

If you haven’t already done so, please install R and R Studio as out-
lined in the Pre-Conference Workshop Handout. In this section we will
learn how to:

1. Load the googleVis package
2. Load the data into R
3. Write code to specify our charts
4. Write a file containing all the necessary JavaScript to use in our

websites.

Load the googleVis Package

Next, we will install the package that contains the commands for the
Google Charts. Execute the following command:

install.packages('googleVis')

Load library
library(googleVis)

Creating a generic function for 'toJSON' from package 'jsonlite' in package 'googleVis'

##
Welcome to googleVis version 0.6.2
##
Please read Google's Terms of Use
before you start using the package:
https://developers.google.com/terms/
##
Note, the plot method of googleVis will by default use
the standard browser to display its output.

google charts for institutional research websites 7

##
See the googleVis package vignettes for more details,
or visit http://github.com/mages/googleVis.
##
To suppress this message use:
suppressPackageStartupMessages(library(googleVis))

Loading Your Data

You can load your data in one of two ways. You can point to a file
using the “Import Dataset” feature in your environment tab, or you
can execute the following code that points to your data file:

data <- read.csv("C:/File/Path/chart_data.csv")

For example

trendUH <- read.csv("I:/IR Staff Area/Jorge/TAIR Workshop 2017/trendUHln.csv")

After loading this data, it will appear in your environment as a new
Data Frame. These will be the DataTables mentioned earlier and will
contain all the necessary data for your visualizations.

Chart Functions

This package makes it easy to define our charts without having to
write the JavaScript. The naming convention for each function starts
with 'gvis + ChartType'. For example, gvisLineChart will define
line charts, gvisColumnChart will define bar charts, etc. Here is a
sample function:

trendUHln <- gvisLineChart(trendUH, xvar="Year", yvar="Count",
options=list(), chartid = "trendUHln")

The <- defines an object called trendUHln as a Google line chart
using the function gvisLineChart. This function uses the data
trendUH that has an x variable for the chart called “Year” and a y
variable for enrollment “Count” to be plotted. We give the chart some
options inside the () in options=list(). This is where we will de-
fine the chart dimensions, labels, titles, colors, etc. Finally, we give
the chart a unique identifier using chartid= "chartName" which we
will use to call the chart in our HTML documents. Let’s make some
charts.

Line Chart

Line charts show bivariate relationships between one variable along
the x axis and one along the y axis. In this example, we will show
enrollment over time:

google charts for institutional research websites 8

Load library
library(googleVis)

Load your data
trendUH <- read.csv("I:/IR Staff Area/Jorge/TAIR Workshop 2017/trendUHln.csv")

view your data
View(trendUH)

see data structure
str(trendUH)

'data.frame': 83 obs. of 2 variables:
$ Year: int 1934 1935 1936 1937 1938 1940 1941 1942 1943 1944 ...
$ Fall: int 909 948 1249 1285 1563 2488 2494 1508 1104 2720 ...

run a summary of the data
summary(trendUH)

Year Fall
Min. :1934 Min. : 909
1st Qu.:1956 1st Qu.:11918
Median :1976 Median :28907
Mean :1976 Mean :23371
3rd Qu.:1996 3rd Qu.:32474
Max. :2017 Max. :45364

create a simple line chart
trendUHln <- gvisLineChart(trendUH, xvar="Year", yvar="Fall",

options=list(), chartid = "trendUHln")

plot the chart
plot(trendUHln)

R will open the default web browser on your computer to draw the
chart. In this example, we can see all the values in our DataTable
between the min and max values, years 1934 and 2017, respectively.
Lets pull in another DataTable for a more complex look at a line
chart.

load data
stuDegTrend <- read.csv("I:/IR Staff Area/Jorge/TAIR Workshop 2017/stuDegTrendLn.csv")

view data
View(stuDegTrend)
head(stuDegTrend,5)

google charts for institutional research websites 9

Year Certificate Associate Bachelors
1 1935 NA 27 81
2 1936 NA 28 118
3 1937 NA 28 154
4 1938 NA 9 165
5 1939 NA 7 139
Masters Doctoral Professional Total
1 NA NA NA 108
2 NA NA NA 146
3 NA NA NA 182
4 NA NA NA 174
5 NA NA NA 146

stuDegTrendLn <- gvisLineChart(stuDegTrend, xvar="Year",
yvar=c("Bachelors", "Masters",

"Doctoral", "Professional"),
chartid = "stuDegTrend")

plot(stuDegTrendLn)

In this example, we pull in more than two columns to represent
multiple categories. The c() function is used to create a vector of
values. You could define variable z as a vector of numbers 1-5, and a
as another vector with numbers 6-10:

z <- c(1,2,3,4,5)
z

[1] 1 2 3 4 5

a <- c(6,7,8,9,10)
a

[1] 6 7 8 9 10

you can also use c() to concatenate vectors
az <- c(z,a)
az

[1] 1 2 3 4 5 6 7 8 9 10

In this case, we are concatenating all of the values for each degree
type, Bachelors, Masters, etc.

Exercise 1: Enrollment trends over time

Construct a line graph to show your institution’s enrollment over time.
What changes would you make for the aesthetics?

google charts for institutional research websites 10

Customizing Your Charts

Each chart type requires similar yet specific DataTable structures and
each has their own customization options. In this section, we will go
through some of the common customization features that fall into the
options=list() argument.

Colors

Color is pretty, but color is also meaningful. Your color choices should
be carefully considered. Each element of your graphic should be infor-
mative and necessary. For example, is it necessary to use customized
colors for the singular line in trendUHln? Why or why not?

Specifying colors is pretty easy. Let specify some colors to the de-
grees conferred line chart:

stuDegTrendLn <- gvisLineChart(stuDegTrend, xvar="Year",
yvar=c("Bachelors", "Masters",

"Doctoral", "Professional"),
chartid = "stuDegTrend",
options = list(

colors="['#C8102E', '#00B388',
'#F6BE00', '#888B8D', '#960C22']"))

Size

stuDegTrendLn <- gvisLineChart(stuDegTrend, xvar="Year",
yvar=c("Bachelors", "Masters",

"Doctoral", "Professional"),
chartid = "stuDegTrend",
options = list(

colors="['#C8102E', '#00B388',
'#F6BE00', '#888B8D', '#960C22']",
width=500,
height=500))

google charts for institutional research websites 11

Titles

stuDegTrendLn <- gvisLineChart(stuDegTrend, xvar="Year",
yvar=c("Bachelors", "Masters",

"Doctoral", "Professional"),
chartid = "stuDegTrend",
options = list(

colors="['#C8102E', '#00B388',
'#F6BE00', '#888B8D', '#960C22']",
width=800, height=500,
title="Academic Level, 1935-2017",
hAxis="{title:'Year'}"))

plot(stuDegTrendLn)

Although the main configuration is all you will probably need for
your charts, there are still plenty customizable features. Google offers
a very helpful guide to all chart types: https://developers.google.
com/chart/interactive/docs/. We will use this resource to help
us customize our charts. A faster and more direct way to get to each
charts’ options can be found by using help() for each of the gvis
functions (line, bar, pie, etc.):

help('gvisLineChart')
help('gvisBarChart')

Exercise 2: Enrollment by Level

Create a line chart using your institutional data by academic level. If
you cannot access that information quickly, use UH data by navigating
to uh.edu/ir/reports and click on “Quick Semester Statistics” for Fall
2012 to Fall 2017. Include the following specifications:7 7 Hint: use the help() function to find

customization parameters.
1. Give a title for your chart.
2. Add labels for the horizontal and vertical axes.
3. Choose different colors for each line.
4. Set chart dimensions to 800W x 500H.
5. Place the legend at the bottom of the chart.
6. Add points to your lines.

Bar and Column Charts

From experience, bar charts are ubiquitously popular in institutional
research. Bar charts are a favorite because they are very easy to un-
derstand. Google charts has two types of bar charts: horizontal (bar
charts) and vertical (column charts). They work the same way. In the

https://developers.google.com/chart/interactive/docs/
https://developers.google.com/chart/interactive/docs/

google charts for institutional research websites 12

next example, we construct a bar chart to show degrees conferred by
race/ethnicity.

load data
stuDegR <- read.csv("I:/IR Staff Area/Jorge/TAIR Workshop 2017/stuDegRBar.csv")

see data
stuDegR

Ethnicity Total
1 African American 835
2 Asian American 1764
3 Hawaiian/P.I. 24
4 Hispanic 2444
5 International 1163
6 Multiracial 235
7 Native American 17
8 Unknown 155
9 White 2811

create bar chart
stuDegRBar <- gvisBarChart(stuDegR, xvar="Ethnicity",

yvar="Total",
chartid="stuDegRBar")

plot chart
plot(stuDegRBar)

This representation is a bit on the ugly side. Let’s order the data:

order data descending
stuDegR2 <- stuDegR[order(-stuDegR$Total),]

stuDegRBar2 <- gvisBarChart(stuDegR2, xvar="Ethnicity",
yvar="Total",
chartid="stuDegGenRBar")

plot(stuDegRBar2)

Notice how the xvar is set to Ethnicity and yvar is set to Total
even though the chart x-axis is the total value. If you substitute the
function gvisBarChart with gvisColumnChart, you get ethnicity
on the x-axis and total on the y-axis as a column chart. Remember
that xvar will be associated with the major categories and yvar with
the values, not necessarily what is drawn on the axis in the resulting
chart.

google charts for institutional research websites 13

Exercise 3: Degrees Conferred Bar and Column Charts

Using your data or the sample data below, create one bar and one
column chart showing number of degrees conferred by Race/Ethnicity
and by Gender. Give the following attributes:

1. Chart title
2. Axes titles
3. Colors
4. Sort by greatest to smallest values

Bonus: Change the legend names from Female/Male to Women/Men.

Ethnicity Female Male Total

African American 598 311 909
Asian American 958 848 1806
Hawaiian/P.I. 8 5 13
Hispanic 1363 1041 2404
International 527 650 1177
Multiracial 129 104 233
Native American 4 10 14
Unknown 73 55 128
White 1489 1423 2912

HTML Tooltips

Rolling over chart elements offers detailed information used to con-
struct it. These are called tool tips and they can be very helpful when
you want to include custom information about your data. We create
special role columns that follow the column of the data you want to
customize. For example:

Ethnicity Female Female.html.tooltip Male Male.html.tooltip

African American 598 African American, Female, 598 (65.8%) 311 African American, Male, 311 (34.2%)
Asian American 958 Asian American, Female, 958 (53%) 848 Asian American, Male, 848 (47%)
Hawaiian/P.I. 8 Hawaiian/P.I., Female, 8 (61.5%) 5 Hawaiian/P.I., Male, 5 (38.5%)
Hispanic 1363 Hispanic, Female, 1363 (56.7%) 1041 Hispanic, Male, 1041 (43.3%)
International 527 International, Female, 527 (44.8%) 650 International, Male, 650 (55.2%)
Multiracial 129 Multiracial, Female, 129 (55.4%) 104 Multiracial, Male, 104 (44.6%)
Native American 4 Native American , Female, 4 (28.6%) 10 Native American , Male, 10 (71.4%)
Unknown 73 Unknown, Female, 73 (57%) 55 Unknown, Male, 55 (43%)
White 1489 White, Female, 1489 (51.1%) 1423 White, Male, 1423 (48.9%)

When specifying role columns, it must follow the column of the

google charts for institutional research websites 14

data it describes and it must include the name of the column it de-
scribes plus html.tooltip, in this example Female.html.tooltip.
Then, include these tooltip columns in the yvar portion of the chart
function in your R code.8 8 For more information on working

with roles, follow this link.

Exercise 4: Customizing Tooltips

Using your chart from Exercise 3, modify your DataTable to include
customized tooltips. You can create any content you’d like for the
tooltips. For one of the tooltips cells, type in the following: . Then, in your options list parame-
ter, include the option tooltip="{isHtml:'TRUE'}". What does this
do to the tooltip for the cell where you entered the URL?

Pie Charts

People tend to dislike pie charts because they don’t find them useful.
I agree to a certain degree, but they are effective at showing propor-
tionality to a whole. I also find Google makes nice pie charts and they
become much more effective with the tooltips. The DataTable struc-
ture is very simple for pie charts. All you need is the category and
the value for each category. The variable naming convention is a little
different, however:

stuRes <- read.csv("I:/IR Staff Area/Jorge/TAIR Workshop 2017/stuResPie.csv")

stuResPie <- gvisPieChart(stuRes,
labelvar="Residence",
numvar="Number",
chartid = "stuResPie",
options=list(width=500, height=350,

title="Residency",
colors="['#C8102E','#960C22', '#640817',
'#F6BE00','#00B388']"))

plot(stuResPie)

Exercise 5: Student Enrollment by Classification Pie Chart

Create a pie chart using your data or table 4 in the pre-conference
workshop handout. Give it a title, custom dimensions, and colors for
each category. Modify your code to create a donut chart and experi-
ment with the size of this parameter. Finally, remove the slice labels
to encourage users to hover over each slice. Remember to use the
help() function to find the names for each option.

https://cran.r-project.org/web/packages/googleVis/vignettes/Using_Roles_via_googleVis.html

google charts for institutional research websites 15

GeoCharts

Situating data along spatial boundaries is not only fun, but infor-
mative for recruiting and enrollment. GeoCharts allows us to plot
a numeric value along some political boundary. The DataTable for
GeoCharts is also a simple one: one variable for location and another
for color, or the color assigned to a range of values. Location can be
one of two formats. The first can be latitude & longitude coordinates.
The second can be an address, country name, region name, or US
metropolitan area. You must also specify three important options:

1. Region: The area to display; can be ‘world’, continent or subconti-
nent, country, or a state.

2. Display Mode: If you want to display color on regions (e.g., states),
set this parameter to ‘region’. If you want to place markers on re-
gions, set it to ‘markers’. Think of these as drop-pins on a map.
Finally, you can superimpose text from the DataTable onto a re-
gion.

3. Resolution: This option draws the lines on your region. These can
be ‘countries’ inside of continents, ‘provinces’ (or states) within a
country, or ‘metros’ within provinces.

stateUG <- read.csv("I:/IR Staff Area/Jorge/TAIR Workshop 2017/stuEnrUGMap.csv")

stuEnrUGMap <- gvisGeoChart(stateUG, locationvar='State', colorvar='Percent',
chartid = "stuEnrUGMap",
options=list(region="US",

displayMode="regions",
resolution="provinces",
width=500, height=350,
colorAxis="{colors:['#C8102E']}"))

plot(stuEnrUGMap)

Exercise 6: GeoChart of Student Enrollment

Using your data, construct a GeoChart showing your institution’s stu-
dent enrollment by state. What happens if you change displayMode
from "regions" to "text"? What about setting the same option to
"markers"? What happens when you hover over New York or New
Jersey using text and markers modes?

Tree Maps

Tree maps, like the name suggests, visualize hierarchical data struc-
tured from one main root to its many branches. In institutional re-

google charts for institutional research websites 16

search, tree maps are effective at showing university, college, depart-
ment, etc. level data. You start with the main level and drill down to
the branching levels. This representation requires a specific DataTable
structure:

ID Parent CountCurrent CountLast Diff

College 43774 40747 3027
Architecture College 700 711 -11
Arts College 1527 1576 -49
Business College 6182 6039 143
Education College 2522 2629 -107
Engineering College 4969 4602 367
HRM College 1055 1182 -127
Law College 800 875 -75
Lib Arts & Soc Sci College 10948 10347 601
NSM College 5523 5681 -158
Nursing College 94 0 94
Optometry College 433 436 -3
Pharmacy College 717 1241 -524
Social Work College 482 402 80
Technology College 6356 3712 2644
Exploratory Studies College 1466 1314 152
School of Art Arts 796 854 -58
Arts Interdept Arts 35 0 35
Music Arts 526 550 -24
Theatre and Dance Arts 169 172 -3
Accountancy & Taxation Business 1162 1265 -103
Business Interdepartmental Business 3180 2966 214
Dec. & Information Sci Business 753 783 -30
Finance Business 559 532 27
Management Business 181 185 -4
Marketing & Entrepre Business 347 308 39
Curriculum & Instruction Education 1168 1459 -291
Educ Ldrshp & Pol Std Education 237 102 135
Education Interdept Education 5 28 -23
Psych Health & Learning Sci Education 1112 1038 74

The first column of the DataTable contains the ID. The ID must
have at least two levels. The first row will be the main root of the
treemap, in this case College. Since this row is the main root, it will
not have a value for the Parent column. The Parent column asso-
ciates the following rows with the main root. This is where we input
values for each college at the university. The next parent level should
be associated with a name in the higher level. In this case, the next

google charts for institutional research websites 17

parent level is the department. Here is the sample code:

stuEnrCD <- read.csv("I:/IR Staff Area/Jorge/TAIR Workshop 2017/stuEnrCDTree.csv",
na.strings="")

stuEnrCDTree <- gvisTreeMap(stuEnrCD, idvar="ID", parentvar="Parent",
sizevar = "CountCurrent", colorvar = "Diff",
chartid = "stuEnrCDTree",
options=list(width=1100, height=500,

minColor='#d7191c',
midColor='#ffffbf',
maxColor='#1a9641',
fontColor='black',
title="Change in College & Department

Enrollment, Fall 2012 to 2017",
showScale=TRUE,
showTooltips=TRUE))

plot(stuEnrCDTree)

Merging Charts

There are two ways to creating a dashboard with Google Charts.
The first involves creating <div> containers that define divisions or
section in an HTML document. This method is discussed later under
Situating Charts on Your Webpage. The second method utilizes the
gvisMerge function. gVisMerge takes two gvis objects and places
them onto one page. Here is one example:

Undergrad State Map
stuEnrUGMap <- gvisGeoChart(stateUG, locationvar='State', colorvar='Percent',

chartid = "stuEnrUGMap",
options=list(region="US",

displayMode="regions",
resolution="provinces",
width=500, height=350,
colorAxis="{colors:['#C8102E']}"))

Student Residency
stuResPie <- gvisPieChart(stuRes,

labelvar="Residence",
numvar="Number",
chartid = "stuResPie",
options=list(width=500, height=350,

title="Residency",

google charts for institutional research websites 18

colors="['#C8102E','#960C22', '#640817',
'#F6BE00','#00B388']"))

gvisMerge
merge <- gvisMerge(stuEnrUGMap, stuResPie, horizontal=TRUE)
plot(merge)

Exercise 7: Merging Charts using gvisMerge

Using the charts you constructed in exercises 1-6, create a 3x3 chart
dashboard.

Printing the Underlying Code

R easily plots googleVis objects as self-containing HTML files in your
default browser from the console. Once you are satisfied with your
charts, you can print and save the HTML source code easily with the
following commands:

print(stuResPie, 'chart')

<!-- PieChart generated in R 3.4.3 by googleVis 0.6.2 package -->
<!-- Wed Feb 07 16:06:36 2018 -->
##
##
<!-- jsHeader -->
<script type="text/javascript">
##
// jsData
function gvisDatastuResPie () {
var data = new google.visualization.DataTable();
var datajson =
[
[
"Harris County",
24545
],
[
"Adjacent Counties",
11163
],
[
"Other Texas Counties",
4629
],

google charts for institutional research websites 19

[
"Out-of-State",
1162
],
[
"International",
3865
]
];
data.addColumn('string','Residence');
data.addColumn('number','Number');
data.addRows(datajson);
return(data);
}
##
// jsDrawChart
function drawChartstuResPie() {
var data = gvisDatastuResPie();
var options = {};
options["allowHtml"] = true;
options["width"] = 500;
options["height"] = 350;
options["title"] = "Residency";
options["colors"] = ['#C8102E','#960C22', '#640817',
'#F6BE00','#00B388'];
##
##
var chart = new google.visualization.PieChart(
document.getElementById('stuResPie')
);
chart.draw(data,options);
##
##
}
##
##
// jsDisplayChart
(function() {
var pkgs = window.__gvisPackages = window.__gvisPackages || [];
var callbacks = window.__gvisCallbacks = window.__gvisCallbacks || [];
var chartid = "corechart";
##
// Manually see if chartid is in pkgs (not all browsers support Array.indexOf)
var i, newPackage = true;

google charts for institutional research websites 20

for (i = 0; newPackage && i < pkgs.length; i++) {
if (pkgs[i] === chartid)
newPackage = false;
}
if (newPackage)
pkgs.push(chartid);
##
// Add the drawChart function to the global list of callbacks
callbacks.push(drawChartstuResPie);
})();
function displayChartstuResPie() {
var pkgs = window.__gvisPackages = window.__gvisPackages || [];
var callbacks = window.__gvisCallbacks = window.__gvisCallbacks || [];
window.clearTimeout(window.__gvisLoad);
// The timeout is set to 100 because otherwise the container div we are
// targeting might not be part of the document yet
window.__gvisLoad = setTimeout(function() {
var pkgCount = pkgs.length;
google.load("visualization", "1", { packages:pkgs, callback: function() {
if (pkgCount != pkgs.length) {
// Race condition where another setTimeout call snuck in after us; if
// that call added a package, we must not shift its callback
return;
}
while (callbacks.length > 0)
callbacks.shift()();
} });
}, 100);
}
##
// jsFooter
</script>
##
<!-- jsChart -->
<script type="text/javascript" src="https://www.google.com/jsapi?callback=displayChartstuResPie"></script>
##
<!-- divChart -->
##
<div id="stuResPie"
style="width: 500; height: 350;">
</div>

Save as HTML file
print(stuResPie, 'chart', file='I:/IR Staff Area/Jorge/TAIR Workshop 2017/stuResPie.html')

google charts for institutional research websites 21

Situating Charts on Your Webpage

This section of the workshop will take the charts you have constructed
in R and compile them in an HTML file for the web. The most basic
website has the following features:

<html>

<head>

Your Google Chart code will go here. These include
jsData, jsDrawChart, and jsDisplayChart.

</head>

<body>

All webpage elements go in the body, including the <div> container that calls your chart.

</body>

</html>

The best practice (so far) is to save the HTML output from R and
embed that code in an existing IR webpage. The webpage will already
contain the necessary style elements for your site, including university
logos, colors, banners, navigation, links, etc. The first step will be to
identify where your charts will live on your website and save that page
to your computer by right-clicking the page and saving as a complete
webpage. You can then copy and paste the chart code into the HTML
file you just saved and edit using Brackets or any other HTML editor.

R will produce an HTML file with the following sections:

1. jsHeader: This signals the beginning of a JavaScript chunk.
2. // jsData: This section holds all of the DataTable information

with the appropriate columns and rows containing your institu-
tional data.

3. // jsDrawChart: This section provides all of the specifications
and attributes to your visualizations, including dimensions, legends,
titles, colors, etc.

4. // jsDisplayChart: This part is responsible for loading all the
necessary packages for displaying the jsData and the chart specifi-
cations in jsDrawChart.

5. // jsFooter: These lines of script load the charts.

The above components should be copied into the <head> of your
HTML file. You will call these charts to be drawn in the <body> using

google charts for institutional research websites 22

<div> tags. <div> tags define a division or section in an HTML docu-
ment. We will call each chart using <div> tags by their unique chart
IDs we created in R. Here is an example:

<h3 style="text-align: center;">Enrollment</h3>
<div class="row">
<div class="col-md-6 col-sm-6 col-xs-12">
<div align="center" class="chart" id="stuEnrGenRCol"></div>
</div>
<div class="col-md-6 col-sm-6 col-xs-12">
<div align="center" class="chart" id="stuFtptCol"></div>
</div>
</div>

This code block shows one <div> tag that defines a row with two
more <div> tags that create a space for two charts. Each of these tags
are nested and are closed with corresponding </div> tags. The chart
will be called using the chart id defined inside the <div> tag. This is
where your chart will appear on your website.

Exercise 8: Create your webpage

Download the website where you envision your charts will go. Open
brackets to embed your chart code in the HTML file you just down-
loaded. Include some navigation tabs at the top of your page.

Additional Resources

The purpose of this workshop was to introduce a basic understanding
of how to construct Google Charts so that you can take these skills
and develop your charts further. As a group, we created a small subset
of charts, including bar, pie, line, geo, and treemap charts. There are
plenty more charts are you disposal. Your mastery of the basic charts
are easily transferable to any available charts.

To help keep you moving forward, I have assembled a list or helpful
resources for further exploration below:

1. Google Charts Reference Guide: https://developers.google.
com/chart/

2. Introduction to googleVis 0.6.2: https://cran.r-project.org/
web/packages/googleVis/vignettes/googleVis.pdf

3. googleVis package documentation: https://cran.r-project.
org/web/packages/googleVis/googleVis.pdf

4. An Introduction to R: https://cran.r-project.org/doc/
manuals/r-release/R-intro.pdf

https://developers.google.com/chart/
https://developers.google.com/chart/
https://cran.r-project.org/web/packages/googleVis/vignettes/googleVis.pdf
https://cran.r-project.org/web/packages/googleVis/vignettes/googleVis.pdf
https://cran.r-project.org/web/packages/googleVis/googleVis.pdf
https://cran.r-project.org/web/packages/googleVis/googleVis.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

google charts for institutional research websites 23

5. Swirl - Learn R in R: http://swirlstats.com/
6. W3Schools HTML Tutorial: https://www.w3schools.com/html/
7. ggmap Spatial Visualization with ggplot2: https://journal.

r-project.org/archive/2013-1/kahle-wickham.pdf

http://swirlstats.com/
https://www.w3schools.com/html/
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf

	Introduction
	Your Tool Belt
	Why Visualize a Data Dashboard?
	Prepare Your Data
	Chart Anatomy
	Constructing Your Charts in R
	Line Chart
	Exercise 1: Enrollment trends over time
	Customizing Your Charts
	Exercise 2: Enrollment by Level
	Bar and Column Charts
	Exercise 3: Degrees Conferred Bar and Column Charts
	Exercise 4: Customizing Tooltips
	Pie Charts
	Exercise 5: Student Enrollment by Classification Pie Chart
	GeoCharts
	Exercise 6: GeoChart of Student Enrollment
	Tree Maps
	Merging Charts
	Exercise 7: Merging Charts using gvisMerge
	Printing the Underlying Code
	Situating Charts on Your Webpage
	Exercise 8: Create your webpage
	Additional Resources

