CHAPTER 14: Ethers, Epoxides, Sulfides

Importance:

Structure / Polarity / Physical Properties

CH₃-O-CH₃

CH₃CH₂CH₃

CH₃CH₂-O-H

dipole moment

boiling point

Ethers as Solvents:

- limited reactivity
- not as toxic as chlorinated solvents such as CCl₄ / CHCl₃ / CH₂Cl₂
- low boiling, so easily removed
 large dipole moments and H bond acceptors, so dissolve polar substances
- no H-bonds between ether molecules, so dissolve nonpolar substances (no H-bonds to disrupt)
- no acidic hydrogens, so can serve as solvents under strong basic conditions

18-crown-6

Ether Complexes:

- a. Grignard reagent -
- b. Boron reagents -
- c. Crown ether / cations -

Nomenclature of Ethers

I. Acyclic Ethers - 2 accepted systems

A. As alkyl alkyl ether: Name each alkyl group attached to oxygen in alphabetical order and add "ether."

$$CH_3CH_2CH_2 - O - CH_2CH_2 - OH$$

B. As alkoxy alkane: Name the RO- group as an alkoxy group. The larger or more complex group is CH_3 CH_3 CH_3 CH_3 -C CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3

$$CH_3CH_2CH_2 - O - CH_2CH_2-OH_2$$

- II. Cyclic ethers (Epoxides) 3 accepted systems
- A. Common name: Name of alkene used to form the epoxide plus "oxide." (industry uses)

B. Name the oxygen of the epoxide ring as an epoxy substituent. Use both numbers of the carbons bonded to oxygen to designate position.

$$H_2C$$
 CH- CH_3

C. Name as derivative of oxirane.

$$H_2C$$
 CH_2

SYNTHESIS OF ETHERS

I. Williamson Ether Synthesis

A. R-O-H
$$\xrightarrow{\text{Na or } K \text{ or } \text{NaH}}$$
 R-O-Na+ + R'-CH₂-X \longrightarrow

$$\begin{array}{c} \text{CH}_3\\ \text{I}\\ \text{CH}_3\text{CH}_2\text{-O-CHCH}_3 \end{array} \quad \blacktriangleleft$$

II. Alkoxymercuration/demercuration

$$C = C \frac{1. \text{ Hg(OAc)}_2/ \text{ ROH}}{2. \text{ NaBH}_4}$$

Mechanism:

$$CH_{3}CH = CH_{2} \qquad \frac{Hg(OAc)_{2}/ROH}{OOCH_{3}-C-O-Hg-O-C-C-CH_{3}} \qquad CH_{3}CH = CH_{2} \qquad \frac{ROH}{ROH} \qquad \frac{+O-R}{CH_{3}CHCH_{2}} \qquad ROH \qquad HgOAc$$

$$CH_{3}CH = CH_{2} \qquad \frac{ROH}{CH_{3}CHCH_{2}} \qquad ROH \qquad HgOAc$$

$$OAc \qquad OAc \qquad OAc$$

III. Symmetrical ethers through intermolecular dehydration of 1° alcohols

$$R-O-H + H-O-R \xrightarrow{H^+}$$

Mechanism:

$$R-O-H$$
 H
 $R-O-H$
 H
 $R-O-H$
 H
 $R-O-R$
 $R-O-R$

NOT for unsymmetrical ethers! CH_3CH_2-O-H + CH_3-O-H $\frac{H_2SO_4}{140^{\circ}C}$

REACTIONS OF ETHERS

- ethers are unrective to many organic reagents
- ether bond (C-O) is stable to
- 1. Cleavage by strong acids (HI and HBr, not HCl)

Mechanism:

$$\begin{array}{c|c}
 & CH_3 \\
 & I \\
 & CHCH_2CH_3
\end{array}$$

$$\begin{array}{c}
 & H-I \\
\hline
 & (xs)
\end{array}$$

II. Autoxidation (DANGER!!)

$$R-O-C-H$$
 $\xrightarrow{O_2 (xs)}$ $R-O-C-O-O-H$ + $R-O-O-C-H$

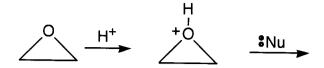
Synthesis of Epoxides:

I. Epoxidation of alkenes with peroxyacids:

Mech: a concerted process

Electron rich π bonds react fastest:

Stereochemistry of the alkene is maintained:


II. Intramolecular Williamson

$$C = C$$
 CH_3
 $C = C$
 CH_3
 CH_2O
 CH_3
 CH_2O
 CH_3
 $CH_$

Larger cyclic ethers can also be formed:

REACTIONS OF EPOXIDES

I. Acid - catalyzed cleavage

II. Base - catalyzed cleavage

If the epoxide is symmetrical, the results of acid cat. and base cat. are the same. Consider each process with asymmetrical epoxides:

I. Acid - catalyzed cleavage

$$H_3C$$
 CH_3 CH_2 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8

II. Base - catalyzed cleavage

Summary:

- 1. Weak nucleophiles (H2O, ROH, Cl) only react with protonated epoxide.
- 2. Strong nucleophiles (OH -, RO -, NH₂ -, CN -, carbanions) react with unprotonated epoxide.
- 3. Acid cat. process: Nu attacks the more substituted carbon.
- 4. Base cat. process: Nu attacks the less substituted carbon.
- III. Reaction of Epoxide with Grignard/Organolithium Reagents

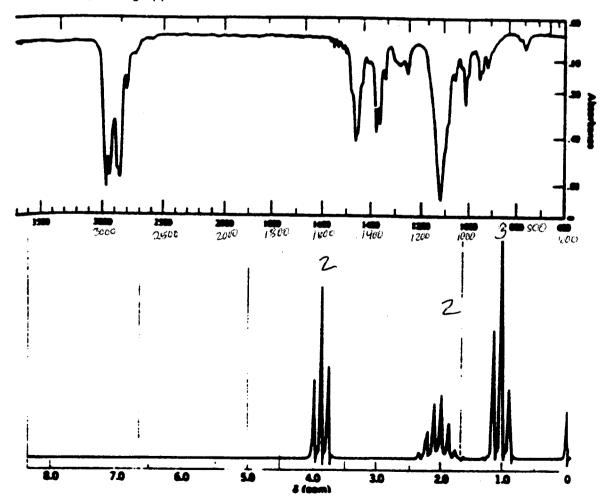
IV. Reaction of Epoxide with Acetylide Ion

Compare to:

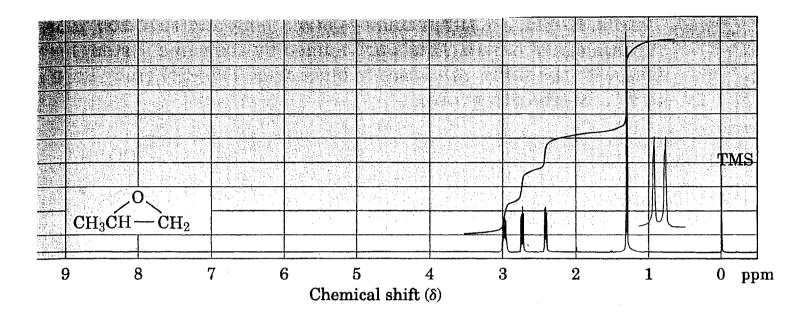
$$\begin{array}{ccc}
 & O \\
 & \parallel \\
 & CH_3-C \equiv C - Na^+ \\
\hline
\end{array}$$

squalene

The organic chemist's mechanism:


Spectroscopy of Ethers

IR: absence of 0-H stretch (alcohols) and carbonyl C=O stretch (aldehyde/ketone/acids) C-O stretch between 1050-1150 cm⁻¹ is usually strong


Spectroscopy of Epoxides

 ^{1}H NMR: protons of carbons adjacent to epoxide oxygen slightly higher field (upfield) than those of of other ethers - 2.5 - 3.5 δ

Unknown Example: C₆H₁₄O

1H NMR Spectrum of 1,2-epoxypropane

