Department of Mathematics

Summer 2016

GRADUATE COURSE SUMMER 2016 - (05/16/16-08/14/16)

SENIOR UNDERGRADUATE COURSES

Course	Section	Course Title & Session	Course Day & Time	Rm #	Instructor
Math 43771	10172	Advanced Linear Algebra I	MTWThF, 10am-Noon	SEC 203	K. Kaiser
		(Session #2: 06/06-07/09)			
Math 43781	13667	Advanced Linear Algebra II	MTWThF, 10am-Noon	SEC 203	A. Török
		(Session #4:07/11-08/13)			
Math 4389	18101	Survey of Undergraduate Math	(online)	(online)	C. Peters

GRADUATE ONLINE COURSES

Course	Section	Course Title	Course Day & Time	Instructor
Math 5310	20278	History of Mathematics (Session #2: 06/06 - 07/09)	(online)	S. Ji
Math 5336	12739	Discrete Mathematics	(online)	K. Kaiser
Math 5378	20283	Axiomatic Geometry		L. Hollyer
Math 5382	15022	Probability (Session #3: 06/06 - 07/21)	(online)	C. Peters
Math 5383	20279	Number Theory (Session #4: 07/11 - 08/13)	(online)	M. Ru
Math 5389	1652/	Survey of Mathematics (Session #2: 06/06 - 07/09)	(online)	G. Etgen

GRADUATE COURSES

Course	SectionCourse Title	Course Day & Time Rm #	Instructor
--------	---------------------	------------------------	------------

Math 6397	10006	Scientific Code Development	MTWThF, Noon-2pmSEC 2	SEC 202	A Török
	19990	(Session #4: 07/11 - 08/13)			ZA. TOPOK

-----Course Details-----

SENIOR UNDERGRADUATE COURSES

	Math 4377 - Advanced Linear Algebra I
Prerequisites:	
Text(s):	Linear Algebra, Fourth Edition by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence
	Syllabus: Chapter 1, Chapter 2, Chapter 3, Chapter 4 (4.1-4.4), Chapter 5 (5.1-5.2) (probably not covered)
	Course Description: The general theory of Vector Spaces and Linear Transformations will be developed in an axiomatic fashion.
Description:	Determinants will be covered to study eigenvalues, eigenvectors and diagonalization.
	Grading: There will be three Tests and the Final. I will take the two
	highest test scores (60%) and the mandatory final (40%). Tests and
	the Final are based on homework problems and material covered in class.
	<< back to top >>
	Math 4378 - Advanced Linear Algebra II
Prerequisites:	Math 4377 or Math 6308
Text(s):	Linear Algebra, 4th edition, by Friedberg, Insel, and Spence, ISBN 0- 13-008451-4
	The instructor will cover Sections 5-7 of the textbook. Topics include:
_	Eigenvalues/Eigenvectors, Cayley-Hamilton Theorem, Inner Products
Description:	and Norms, Adjoints of Linear Operators, Normal and Self-Adjoint
	Operators, Orthogonal and Unitary Operators, Jordan Canonical Form, Minimal Polynomials.

	Math 4389 - Survey of Undergraduate Math
Prerequisites:	MATH 3330, MATH 3331, MATH 3333, and three hours of 4000-level
Fielequisites.	Mathematics.
Text(s):	Instructors notes
Description:	A review of some of the most important topics in the undergraduate mathematics curriculum.

ONLINE GRADUATE COURSES

<< back to top >>

MATH 5310 - History of Mathematics Graduate standing No textbook is required.

Prerequisites: Text(s):

Description:	Aims of the course: To help students to understand the history of mathematics; to attain an orientation in the history and philosophy of mathematics; to gain an appreciation for our ancestor's effort and great contribution; to gain an appreciation for the current state of mathematics; to obtain inspiration for mathematical education, and to obtain inspiration for further development of mathematics. On-line course is taught through Blackboard Learn, visit http://www.uh.edu/webct/ for information on obtaining ID and password.
	 Homework and Essays assignement are posted in Blackboard Learn. There are four submissions for homework and essays and each of them covers 10 lecture notes. The dates of submission will be announced. All homework and essays, handwriting or typed, should be turned into PDF files and be submitted through Blackboard Learn. Late homework is not acceptable. There is one final exam in multiple choice. Grading: 40% homework, 45% projects, 15 % Final exam
	<pre>>> MATH 5336 - Discrete Mathematics</pre>

MATH 5336 - Discrete Mathematics Graduate standing

Prerequisites:

	Discrete Mathematics and Its Applications, Kenneth H. Rosen, seventh edition, McGraw Hill,
Text(s):	ISBN-13 978-0-07-288008-3, ISBN-10 0-07-288008-2.
	Instructor lecture note: Plus: on the Zermelo-Fraenkel Axioms and
	Equivalence of Sets.
	Syllabus: Chapter 1 (Logic and Proofs): 1.1, 1.3, 1.4 -1.6 , Chapter 2 (Sets and Functions), Chapter 5 (Induction): 5.1-5.3, Chapter 9 (Relations)
Description:	The Zermelo Fraenkel Axioms; Equivalence of Sets in form of my notes.
	Grading: Midterm is worth 40%, the final is worth 40% and Homework is worth 20%.
	For turning in Homework, students need to get the software program Scientific Notebook.

<< back to top >>

	MATH 5378- Axiomatic Geometry
Prerequisites:	Graduate standing
Text(s):	College Geometry: A Discovery Approach, David Kay, 2nd. Ed. ISBN:9780321046246
Description:	An axiomatic approach to Finite Geometries, Taxicab Geometry, Spherical Geometry, Hyperbolic Geometry and a review of Euclidean Geometry. Does not apply toward the Master of Science in Mathematics of Applied Mathematics.

<< back to top >>

<< back to top >>

	MATH 5382 - Probability
Prerequisites:	Graduate standing and Two semesters of calculus and one semester
Fielequisites.	of linear algebra
Text(s):	Probability: With Applications and R Edition: 1 by Robert P. Dobrow,
	ISBN: 9781118241257

Description:	Sample spaces, events and axioms of probability; basic discrete and continuous distributions and their relationships; Markov chains, Poisson processes and renewal processes; applications. Applies toward the Master of Arts in Mathematics degree; does not apply toward Master of Science in Mathematics or the Master of Science in Applied Mathematics degrees.
	<< back to top >>
Prerequisites:	MATH 5383 - Number Theory Graduate standing.
Text(s):	Instructor's lecture notes. The reference book will be "Beginning Number Theory" by Neville Robbins, second Edition.
Description:	Number theory is a subject that has interested people for thousand of years. This course is a one-semester long graduate course on number theory. Topics to be covered include divisibility and factorization, linear Diophantine equations, congruences, applications of congruences, solving linear congruences, primes of special forms, the Chinese Remainder Theorem, multiplicative orders, the Euler function, primitive roots, quadratic congruences, and introduction to cryptography. There'll be no specific prerequisites beyond basic algebra and some ability in reading and writing mathematical proofs.
Prerequisites: Text(s): Description:	MATH 5389 - Survey of Mathematics Graduate standing Instructor's notes

GRADUATE COURSES

<< back to top >>

	Math 6397 (19996) -Scientific Code Development
Prerequisites:	Graduate standing.
Text(s):	Instructor's notes, will be posted online

	The purpose of this course is to acquire/improve programming skills in order to tackle mathematical problems that require computations (e.g. numerically solving ODEs, PDEs, SDEs). The emphasis is on converting an algorithm or theoretical result into a good code, and presenting the results in a convenient format.
Description:	Students can use a language they are familiar with or, if needed, learn a new one. Some material will be posted on-line. After presenting the basic principles, students will work on projects. During the face-to- face meetings we will discuss and debug code.
	The course is suitable both for students who have very little/no programming experience and more advanced students. The individual projects will be tailored to each student's level. Alternatively, students can work on projects that are relevant to their own research.

<< back to top >>